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Abstract

Soil microorganisms are a fundamental part of biogeo-
chemical cycling of nitrogen. Nitrate reducing bacteria 
and denitrifying bacteria are diverse groups of bacteria 
involved in nitrogen transformations in soils. Current re-
search has shown that soil denitrification releases nitrogen 
from the soil ecosystem to the atmosphere. As a result, the 
balance between denitrification and N-fixation can deter-
mine the biologically available nitrogen for soils. In fact, 
nitrogen deficiency in soil is a common limiting factor for 
plant growth and productivity. Nitrate reduction and deni-
trification could be affected by some environmental factors 
(e.g. oxygen levels) and could also be affected by various 
contaminants such as crude oil and brine as they may alter 
the abundance and species composition of nitrate reducing 
and denitrifying bacteria. On the other hand, different en-
vironmental factors (e.g., oxygen and humic substances) af-
fect the degradation of petroleum hydrocarbons in soil by 
soil microorganisms. 

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://cre-
ativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 

Introduction 

Soil microorganisms are a fundamental part of biogeochemi-
cal cycles in general and biogeochemical cycling of nitrogen in 
particular. Denitrification is an important component of nitro-
gen cycling in soils, in which some microorganisms (e.g. de-
nitrifying bacteria) use nitrate or nitrite as alternative electron 
acceptors. Multiple studies have focused on various aspects of 
nitrogen cycling. Philippot et al. (2009) linked the distribution 
of the fraction of bacteria with the genetic capacity to reduce 
N2O to N2 to areas with low potential N2O emissions in a pas-
ture. In addition, it was shown that a map of denitrification ac-
tivity across a whole farm was reflected by maps displaying 
the community size and structure of a specific fraction of the 
denitrifiers at the site (Enwall et al., 2010). Since denitrification 
releases mineralized nitrogen from the soil ecosystem to the at-
mosphere, the balance between denitrification and N-fixation 
can determine the biologically available nitrogen for soils (Ol-
livier et al., 2011). 

Denitrification could be affected by soil ecosystem contami-
nants such as crude oil and brine as they may alter the abundance 
and species composition of denitrifying bacteria in predictable 
ways. For example, γ-Proteobacteria are known to increase 
in crude-oil contaminated sites (Shim and Yang, 1999; Lee et 
al., 2002), and a wide diversity of γ-Proteobacteria including 
Pseudomonas and Vibrio species were shown to degrade hy-
drocarbons under nitrate reducing (NR) conditions (Rockne et 
al., 2000). Also, it was suggested that N2O production activity 
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could be sensitive to heavy metal pollution (Liu et al., 2016). 
In addition, other studies (Vosswinkel et al., 1991; Song et al., 
2000, Green et al., 2010) showed that strains for several genera 
of γ-Proteobacteria have the ability to denitrify. It was shown 
that nitrate and nitrite reduction rates were increasingly inhib-
ited at increasing NaCl concentrations when comparing treat-
ment of fishery wastewaters (Mariángel et al., 2008). Bacte-
rial diversity in brine-contaminated sites is expected to be less 
because of selection for salt-tolerant genera such as Bacillus 
(Boch et al., 1997) and Pseudomonas (Egamberdiyeva, 2005). 
In this review, I summarize the role nitrate reducing and de-
nitrifying bacteria play in biogeochemical cycling of nitrogen 
in soils, discuss some factors that affect their abundance and 
their species composition, and highlight the necessity of inves-
tigating communities of denitrifying bacteria using an approach 
based on the enzymes responsible for key steps in denitrifica-
tion pathway rather than 16S rRNA gene since closely related 
species vary in their ability to denitrify and denitrification is 
common among phylogenetically unrelated microbial groups.

Biogeochemical Cycling of Nitrogen 

Nitrogen is an abundant element, with the volume of nitro-
gen gas (N2) forms 78% of the atmospheric total volume. Al-
though N2 forms the highest percentage, nitrogen deficiency in 
soil is a common limiting factor for plant growth and produc-
tivity because vascular plants cannot combine N2 directly into 
organic compounds (Nie et al., 2011). Nitrate (NO3

-) or am-
monium ions (NH4

+) are the main nitrogen forms absorbed by 
plants from the soil. Nitrogen cycles through the environment 
and living organisms including bacteria. Fallen leaves, animal 
feces, and dead plants or animals provide the soil with NH4

+ 
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by the soil microorganisms that break down organic nitrogen 
in a process called ammonification. On the other hand, other 
bacteria obtain energy by oxidizing NH4

+ to produce NO3
- in a 

process called nitrification (Zumft, 1997). However, not all the 
nitrate produced is absorbed by plants. Some bacteria convert 
nitrate to nitrite and then to ammonia in a process called ammo-
nifying nitrite reduction (Zumft, 1997). Other bacteria use ni-
trate and nitrite (NO2

-) as alternative electron acceptors during 
respiration and convert them to the end products nitric oxide 
(NO), nitrous oxide (N2O) and N2 for energy production when 
oxygen is limiting, generally under anaerobic conditions. These 
end products are released to the atmosphere (Figure 1). This 
latter process is the traditionally defined pathway of denitrifica-
tion (Braker et al., 2000).

Physiology, Taxonomic, and Distribution Patterns 
of Nitrate Reducing (NR) / Denitrifying (DN) Bac-
teria

Nitrate reducing (NR) bacteria use nitrate as an alternative 
electron acceptor to obtain energy from dissimilatory reduc-
tion of nitrate into nitrite by nitrate reductase enzymes (Zumft, 
1997). Nitrate reducing bacteria are facultative anaerobes that 
can use oxygen as their terminal electron acceptor (Chèneby et 
al., 2010). Nitrate reducing bacteria represent a diverse group 
with members among α, β, and γ-Proteobacteria, some mem-
bers of Firmicutes, and even Archaea (Philippot, 2005). Nitrate 
reducing bacteria are abundant in various environments such as 
human digestive tract (Bru et al., 2007), earthworm guts (Drake 
and Horn, 2007), and rhizosphere (Brunel et al., 1992). Nitrate 
reduction is a facultative process, it depends primarily on the 

Figure 1. The Nitrogen Cycle.

Atmospheric nitrogen (N2)

Denitrifying 
BacteriaAssimilation



701

A
tla

s J
ou

rn
al

 o
f B

io
lo

gy
 - 

IS
SN

 2
15

8-
91

51
. P

ub
lis

he
d 

B
y 

A
tla

s P
ub

lis
hi

ng
, L

P 
(w

w
w.

at
la

s-
pu

bl
is

hi
ng

.o
rg

)
presence of nitrate, oxygen limitation, and electron donor avail-
ability (Tiedje, 1988). 

In low O2 environments, NO3
- and NO2

- are used as electron 
acceptors by some bacteria that perform a denitrification-like 
respiration (Bock et al., 1995; Braker et al., 2000). A series of 
enzymes direct the denitrification route in denitrifying bacte-
ria: nitrate reductase, nitrite reductase, nitric oxide reductase, 
and nitrous oxide reductase. In anaerobic respiration, these 
enzymes consume NO3

-, NO2
-, NO, and N2O, respectively, as 

terminal electron acceptors (Zumft, 1997). 
After oxygen consumption (1), denitrification (2) is the highest- 
energy-yielding process as shown in equations 1 and 2 (Strohm 
et al., 2007). 
C6H12O6 + 6O2 → 6CO2 + 6H2O (ΔG°ʹ = -2,870 kJ per mol 
glucose) (1) 
5C6H12O6 + 24NO3

- + 24H+ → 30CO2 + 12N2 + 42H2O (ΔG°ʹ = 
-2,670 kJ per mol glucose) (2) 

Denitrification is estimated to remove 40-50% of external 
inputs of dissolved inorganic nitrogen in marine coastal sedi-
ments (Seitzinger, 1990), causing an unbalance of nitrogen 
quantities in the ocean (Devol, 1991; Codispoti, 1995). The 
production and accumulation of NO and N2O contributes to 
global warming and the destruction of the ozone layer (Dick-
inson and Cicerone, 1986; Conrad, 1996). Since denitrification 
is common among phylogenetically unrelated microbial groups 
and closely related species vary in their ability to denitrify, it is 
very unsuitable to investigate communities of DN bacteria by 
using an approach based on 16S rRNA gene sequences (Zumft, 
1992). So, to detect and to analyze denitrifying bacteria, gene 
sequences coding for the enzymes responsible for key steps in 
the denitrification pathway have been used (Braker et al., 1998; 
Scala and Kerkhof, 1998; Scala and Kerkhof, 1999). 

Denitrification consists of four reaction steps in which nitrate 
is reduced to dinitrogen gas (Table 1). The first step where nitrate 
is reduced to nitrite is common step to a taxonomically diverse 
group of bacteria (NR bacteria) and it is catalyzed by two differ-
ent types of nitrate reductases, either membrane bound encoded 
by the narGHJI operon or periplasmic encoded by the napABC 
operon (Kandeler et al., 2006). Nitrite reductase is a significant 
enzyme in the denitrification pathway because it produces NO, 
the first gaseous product (Ye et al., 1994; Casciotti and Ward, 
2001), thus nitrogen loss from soil. This enzyme is found as two 

different forms. The first one contains copper and is encoded 
by nirK, while the second contains cytochromes (hemes) c and 
d1 and is encoded by nirS (Zumft, 1997). These two forms are 
functionally similar (Casciotti and Ward, 2001; Avrahami et al., 
2002) although structurally different (Adman et al., 1995; Cas-
ciotti and Ward, 2001; Avrahami et al., 2002). Many different 
bacteria contain nirS, including Paracoccus denitrificans ATCC 
19367, Pseudomonas stutzeri ATCC 14405, and Roseobacter 
denitrificans ATCC 33942T. Some bacteria that possess nirK 
include Hyphomicrobium zavarzinii IFAM ZV-622 T ATCC 
27496, Alcaligenes sp. strain DSM 30128, and Alcaligenes 
xylosoxidans subsp. denitrificans DSM 30026 (Braker et al., 
1998). nirS appears to be more abundant in nature while nirK 
is found to be more widespread in different taxonomic groups 
(Coyne et al., 1989; Gruntzig et al., 2001). nirK was discovered 
in several ammonia oxidizing bacteria (AOB) such as Nitro-
somonas europaea (Casciotti and Ward, 2001). Physiological 
evidence suggests that nirK might be employed by AOB as a 
protection against NO2

-, the toxic product of ammonia oxida-
tion (Poth and Focht, 1985; Stein and Arp, 1998; Beaumont et 
al., 2004). The reduction of nitric oxide is catalyzed by nitric 
oxide reductase small and large subunits encoded by norC and 
norB, respectively (Braker and Tiedje, 2003). norB includes 2 
classes: the first class encodes cytochrome bc-type complex 
(cNorB) while the second class encodes the quinol-oxidizing 
single-subunit class (qNorB) (Braker and Tiedje, 2003). The 
last step in the denitrification pathway is the reduction of ni-
trous oxide and is catalyzed by nitrous oxide reductase genes 
that are arranged in three transcriptional units consisting of the 
nosZ gene that encodes the catalytic subunit plus the nosR gene 
and the nosDFYL genes (Philippot, 2002). 

Environmental Factors Influencing Nitrate Re-
duction / Denitrification 

Denitrification is an environmentally regulated process with 
respect to oxygen supply, the presence and nature of a nitrogen 
oxide, and possibly additional external factors such as metal 
ions (Philippot, 2002). It was shown that some bacterial strains 
demonstrated nitrite reduction under strict anaerobic condi-
tions, but not in the presence of oxygen (AbuBakr and Dun-
can, 2015). Also, the diversity of NR bacteria in a waste water 

Table 1. Denitrification steps in bacteria.

Step No. Step Catalyzed by (Enzyme) Encoded by (Operon/Gene) Reference

1
Nitrate to nitrite Membrane bound nitrate reductase narGHJI Kandeler et al., 2006

Periplasmic nitrate reductase napABC

2
Nitrite to nitric oxide Nitrite reductase (contains copper) nirK Zumft, 1997

Nitrite reductase (contains 
cytochromes (hemes) c and d)

nirS

3
Nitric oxide to nitrous oxide Nitric oxide reductase small subunit norC Braker and Tiedje, 2003

Nitric oxide reductase large subunit norB

4
Nitrous oxide to dinitrogen gas Nitrous oxide reductase nosZ Philippot, 2002

nosR
nosDFYL



treatment system was affected by salinity where the highest 
diversity of NR bacteria was observed at low salinity (Yoshie 
et al., 2004; Santoro et al., 2006). Moreover, previous studies 
identified soil moisture and surface hydrology as important fac-
tors for supporting high denitrification activity (Groffman and 
Tiedje, 1989; Hunter et al., 2008). However, it was suggested 
that factors other than levels of soil moisture controlled the % 
NR and DN bacteria since the relative abundance of NR and 
DN bacteria had a wide range (e.g. 0% to 100%) in different 
samples with the same moisture level (AbuBakr et al., 2019).

Degradation of Petroleum Hydrocarbons by Fac-
ultative Anaerobic Bacteria 

Petroleum hydrocarbons (HC) consists mainly of saturated 
HC (e.g. alkanes), usaturated HC (e.g. alkenes and alkynes), 
cycloalkanes, mono-aromatic and polycyclic aromatic HC 
(Zhang et al., 2011). Low-molecular-weight molecules, such as 
straight, branched, cyclic alkanes and aromatic HC, have been 
shown to be readily degraded by many microorganisms, while 
long-chain alkanes and polycyclic aromatic hydrocarbons are 
generally considered to be not as easily biodegraded due to 
their higher hydrophobicity (Zhang et al., 2011). Many differ-
ent bacterial genera including Pseudomonas, Acinetobacter, 
and Rhodococcus were shown to degrade alkanes (Atlas, 1981; 
Rojo, 2009). On the other hand, Stenotrophomonas and Pseu-
domonas species are among those shown to degrade toluene, 
benzene, ethylbenzene, and xylene (Shim and Yang, 1999; Lee 
et al., 2002). Also, a wide diversity of γ-Proteobacteria such as 
Pseudomonas and Vibrio species were shown to degrade naph-
thalene (Rockne et al., 2000). Therefore, the presence of crude 
oil might either positively or negatively affect the abundance 
of NR and DN bacteria and their ability to perform nitrogen 
transformations. 

Different environmental factors (e.g., oxygen, temperature, 
pH, and nutrient levels) affect the degradation of petroleum 
hydrocarbons in soil. In addition, several physicochemical fac-
tors such as the number and types of microbial species present; 
the nature, amount, and bioavailability of contaminants (Mac-
Naughton et al., 1999; Röling et al., 2002; and Smith et al., 
2008) also play an important role in degradation of petroleum 
hydrocarbons. 

The presence or absence of oxygen determines the pathway 
of biodegradation of hydrocarbons. Fuchs et al. (2011) sum-
marizes 4 major pathways of aromatic hydrocarbon biodegra-
dation. The first pathway comprises an attack by oxygenases 
that hydroxylate and finally cleave the ring with the help of ac-
tivated molecular oxygen. The second pathway is an anaerobic 
process that converts benzoyl-CoA to cyclic 1,5-dienoyl-CoA. 
The third pathway also occurs under anaerobic conditions in 
which fumarate can be added to toluene with the subsequent 
β-oxidation of the intermediate benzylsuccinate to benzoyl-
CoA. And fourth is the anaerobic hydroxylation of ethylben-
zene to 1-phenylethanol, and the ATP-dependent carboxylation 
of acetophenone that is involved in the conversion to benzoyl-
CoA. 
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Humic Substances: Interaction with Hydrocar-
bon Degradation

Humic substances also affect hydrocarbon degradation. Hu-
mic substances comprise about 60 to 80% of the soil organic 
matter and consist of three chemical groups based on solubility 
in water adjusted to different acid - alkaline (pH levels) condi-
tions: humic acids, fulvic acids, and humin (Brady and Weil, 
2002). Dissolved organic matter (DOM) plays a critical role in 
determining the chemical and biological fate of organic con-
taminants in soils and sediments (Johnson and Amy, 1995). Se-
questration and irreversible binding of DOM has been thought 
to shield organic contaminants from degradation (Ragle et al., 
1997; Engebretson and Wandruszka, 1999). 

Some agricultural soil microorganisms were found to be 
nitrate-dependent humic acid (HA)-oxidizers. These microor-
ganisms are phylogenetically diverse and included members of 
α-Proteobacteria, β-Proteobacteria, and γ-Proteobacteria (Van 
Trump et al., 2011). Also, it was shown that microbial reduc-
tion of humic substances (HS) may play an essential role dur-
ing the anaerobic oxidation of organic pollutants in anaerobic 
environments (Cervantes et al., 2008). Some nitrate-reducing 
organisms also reduced hydroquinones within humic acids 
(HA) (Lovley et al., 1999; Coates et al., 2002). This reduction 
of HA by nitrate reducing bacteria may make hydrocarbons 
more accessible to this group of bacteria. It was illustrated that 
naphthalene 1,2-dioxygenase (NDO) is a humic-modifying en-
zyme that alters the bioavailability of organic contaminants as-
sociated with dissolved organic matter under aerobic conditions 
(AbuBakr et al., 2008).

Nitrogen as a Limiting Nutrient in the Tallgrass 
Prairie

Nitrogen limitation is an important regulator of plant growth 
(Aber et al., 1997; Shaver et al., 2001; LeBauer and Treseder, 
2008). The effect of nitrogen on photosynthesis is simulated by 
most ecosystem models by using a relationship between leaf 
nitrogen content and photosynthetic capacity (Aber et al., 1997; 
Thornton et al., 2002). However, this relationship, in reality, 
may vary with different light, nitrogen availability, temperature, 
and CO2 conditions (Friend, 1991; Reich et al., 1995; Ripullone 
et al., 2003). Photosynthesis and respiration are main biological 
processes in plants in which nitrogen is a major constituent of 
proteins for these processes (Marschner, 1995). However, ni-
trogen is a limiting factor for plant growth (Aber et al., 1997; 
Shaver et al., 2001; LeBauer and Treseder, 2008). Therefore, 
denitrification may decrease soil nitrogen levels available for 
plants, thus affecting the growth and survival under specific en-
vironmental conditions (Friend, 1991; Verkroost and Wassen, 
2005). 

Atmospheric nitrogen is converted into ammonium that is 
available to organisms by biological nitrogen fixation. This pro-
cess is an important natural input of available nitrogen in many 
terrestrial habitats (Zehr et al., 2003). Sublette et al. (2007) 
showed that nitrogen is a critical nutrient in the tallgrass prairie 
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soil where the addition of N-containing fertilizer was used to 
bioremediate a terrestrial crude oil spill, re-establish pre-spill 
N cycling and microbial diversity in order to accelerate the 
subsequent restoration. This microbial diversity is assumed to 
help in re-establishing the wide range of biogeochemical func-
tions that are responsible for the recycling of soil nutrients and, 
as a result, supporting life in that area (Sublette et al., 2007). 
A different study on the fate of the applied NH4 through five 
growing seasons illustrated that the flow of nitrogen within na-
tive tallgrass prairie soils was controlled by the incorporation 
of nitrogen into soil organic matter (SOM). However, plants 
appeared to maintain productivity by firmly conserving immo-
bilized nitrogen (Dell et al., 2005). Burning of grasslands has 
long been recognized to maintain their plant diversity. Burning 
also affects the nitrogen pools. Although burning of grasslands 
causes loss of N from tallgrass prairie systems, burning can in-
crease the total recovery of applied nitrogen due to greater N 
immobilization in the SOM where N is not available for plant 
uptake and needs to be mineralized first. The mechanism for in-
creasing nitrogen immobilization was likely due to the greater 
microbial nitrogen demand in response to larger organic matter 
inputs with wider C:N ratios that is typical of burned prairie. 
This N immobilization increase microbial activity and aid rap-
id decomposition and turnover of organic matter, resulting in 
more available nutrients for plants over time (Dell et al., 2005). 
A different study showed that unburned prairie was wetter and 
had higher concentrations of NO3

- in soil solution than annually 
burned sites. Also, although the rate of denitrification varied 
seasonally, denitrification was significantly higher (P < 0.05) 
in unburned sites than that in annually burned, annually burned 
and grazed, and cultivated sites. In fact, the denitrification en-
zyme activity (e.g. N flux rate) was highest in the unburned 
sites (e.g. 327 ± 69 μg. kg-1. h-1) and lowest in the cultivated 
sites (e.g. 30 ± 5 μg. kg-1. h-1) (Groffman et al., 1993).These 
results indicate that nitrate was released to the atmosphere and 
did not accumulate in soils in the annually burned sites. 
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