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Introduction

Soybean is a major crop in the world and its seeds are con-
sidered a major source of essential nutrients for human and
animal nutrition. In addition to seed protein, oil, fatty acids,
isoflavones, and sugars, soybean seeds contain micronutrients
(trace elements) such as Fe, Zn, Mn, B, and Cu. Micronutrients
are essential for human nutrition, and unbalanced diet of these
nutrients can lead to human malnutrition and health problems
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(Samman et al., 1998; Devirian and Volpe, 2003; Bouis, 2003,
Fletcher et al., 2004; Lu et al., 2008). It was reported that over
three billion people are suffering from malnutrition of miner-
als, especially iron and zinc (Welch and Graham, 2004; White
and Broadley, 2009; Lu et al., 2008) in spite of biofortification
(White and Broadley, 2005, 2009). Micronutrient deficiency in
soil is common and leads to crop yield loss and poor seed qual-
ity (Marschner, 2012; Brown et al., 1999, 2002). Therefore,
developing cultivars with higher levels of micronutrients in the
seeds, especially those related to metal-binding proteins such
Fe, Zn, Cu, Mo, Mn (Zhang et al., 2004; Heinemann et al., 2005;
Philip and Martin, 2005) is critical. The accumulation of minerals
in the seed involves several processes, including nutrients uptake,
translocation, redistribution, and accumulation (Grusak and Del-
laPenna, 1999; White and Broadley, 2009), and most of the
genetic basis of these process are not known (Ding et al., 2010).

The physiological and metabolic roles of micronutrients in
plants were well documented (Marschner, 2012; Brown et al.,
2002; Brown and Hu, 1996; Brown et al.,, 1999; Bellaloui et
al., 1999; Goldbach and Wimmer, 2007). For example, B role
in growth, development, carbohydrates, phenolics, nitrogen me-
tabolism were previously reported (Marschner, 2012). Relation-
ships between sugar-alcohols such as sorbitol was demonstrated
by Brown et al. (1999); Bellaloui et al. (1999). Role of B was
also reported for cell wall structure (Hu and Brown, 1994) and
rhamnogalacturonan Il (RG-II) cross-link in the cell wall to form
dimer (RG-II-B-RG-II), which is important for both the formation
and structural integrity of the cell wall (O'Neill et al., 1996;
Ishii et al., 2001). Molecular function of micronutrients was also
reported such as over-expression of B transporter for B efflux,
BOR1, for xylem loading (Miwa et al., 2006), and a major in-
trinsic protein, NIP5;1, for B uptake was found under B limitation
(Takano et al. 2006). Cloning BOR1-like homologs in B. napus:
BnBOR1;3a and BnBOR1;3c, the expression of BnBOR1;1¢c and
BnBOR1;2a induced by B deficiency (Sun et al.,, 2011), tran-
scription factor gene WRKY 6 for root growth under B deficiency
in Arabidopsis thaliana (Kasajima et al., 2010) were also report-
ed. Over-expression of AtBOR1 led to high seed yield of Ara-
bidopsis under low B condition (Miwa et al.,, 2006), enhanced
expression of AtNIP5;1 for enhancing B uptake under low B
stress and increasing seed yield (Kato et al.,, 2009). Similarly,
the physiological and metabolic roles of Fe, Zn, Cu, and Mn in
plants were well documented in Mengel and Kirkby (1982) and
Marschner (2012).

Quantitative trait loci (QTL) associated with mineral accumu-
lation in seeds were identified in rice (Garcia-Oliveira et al.,
2009), wheat (Peleg et al.,, 2009), and Medicago fruncatula
(Sankaran et al., 2009), but limited to Fe, Zn, and Mn, and no
QTLs for B or Cu have been reported to the best of our knowl-
edge. Recently, QTLs for Mn, Fe, Zn, B, and Cu have been identi-
fied in Brassicaceae shoots (Wu et al.,, 2008; Liu et al., 2009).
Diers et al. (2000) identified QTLs for Fe efficiency in soybean,
and such information can provide clues to researchers to identify
genes related to mineral accumulation and to finally uncover ge-
netic networks that control plant iron homeostasis. Based on the
above discussion, it is clear that there is a lack of information on
QTL that are associated with seed micronutrients that could be
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associated with mineral efficiency (King et al.,, 2013). The QTL
analysis for mineral accumulation in seeds may help identifying
genes encoding transporters, chelators, biosynthesis enzymes,
and regulatory factors including protein kinases, membrane re-
ceptors, and transcription factors (Vreugdenhil et al., 2004).

Quantitative trait loci (QTL) mapping is a powerful tool to
study complex traits such as seed mineral contents (Lu et al.,
2008; Paran and Zamir, 2003). It is used to identify genomic
regions responsible for a trait variation based on the association
between polymorphic markers and phenotypic measurements
(Zeng et al., 2008), and to enlighten the genetic basis of com-
plex traits, where knowledge is limited (Lukowitz, et al., 2000)
such as in seed mineral nutrition. We noticed that the parents
MD 96-5722 and Spencer have significant variation in mineral
concentrations; therefore, we will be able to detect QTLs related
to seed micronutrient accumulation in in this population. It was
reported that genetic variation is essential for achieving higher
seed mineral concentrations (Wu et al.,, 2007; Broadley et al.,
2008; Liu et al., 2009), and this natural variation was exploited
for genetic improvement of crops (Graham et al., 1999; Blair et
al., 2005; Gelin et al., 2007). Except for the very limited identi-
fied QTLs for Fe (Diers et al., 1992, 2000; Lint et al., 2000), Zn
(King et al., 2013), and Mn (Kassem et al., 2004), there were no
QTLs identified for Cu and B nutrients in soybean seeds. There-
fore, the objective of the current study was to identify QTLs
associated with the accumulation of micronutrients Fe, Zn, B, Cu,
and Mnin 92 F,_ recombinant inbred lines (RILs) developed from
a cross between MD 96-5722 and ‘Spencer’ using a total 5,376
Single Nucleotide Polymorphism (SNP) markers.

Materials and Methods
Plant Material and Growth Conditions

A population of 92 F__ recombinant inbred lines (RILs) was
developed by a cross between MD 96-5722 (MD) and Spen-
cer to generate phenotypic and genotypic data. The cross was
made in 2004 By Southern lllinois University at Carbondale
(SIUC) Breeding Program and advanced to the F, _ generation
by single-pod descent method. The population was grown in a
field at Fayetteville State University (FSU) campus, Fayetteville,
NC in 2012 with row spaces of 25 cm and seeding rate of
160,000 seeds ha-1. There was no additional fertilizer or insec-
ticide used. Development of RIL population was previously de-
scribed by Akond et al. (2013). At harvest maturity (R8), seeds
were collected for micronutrients concentrations quantification.

Seed Analysis for Zn, Cu, and Mn

Concentrations of Zn, Cu, and Mn in mature seeds at R8
stage were determined by digesting 0.6 g of dried, ground
seed in HNOS3 in a microwave digestion system. Seed samples
were ground to pass through 1-mm sieve using a Laboratory
Mill 3600 (Perten, Springfield, IL). The concentrations of nutrients
were determined using inductively coupled plasma spectrometry
(ICP) and described in details by Bellaloui et al. (2011, 2013).



Atlas Journal of Plant Biology - ISSN 1949-1379. Published By Atlas Publishing, LP (www.atlas-publishing.org)

Boron Determination

Boron concentration in mature seeds (at R8 stage) was deter-
mined using the Azomethine-H method (Lohse, 1982; Dordas et
al., 2007), and as described in detail by Bellaloui et al. (201 3).
Briefly, a random sample of 1.0 g of ground seed was ashed at
500°C and then extracted with 20 ml of 2 M HCl at 90°C for 10
minutes and filtered. The filtered mixture was added to a buf-
fer solution (25% ammonium acetate, 1.5% EDTA, and 12.5%
acetic acid) and 4 ml of freshly prepared azomethine-H solution
(0.45% azomethine-H and 1% of ascorbic acid) (John et al.,
1975). Boron concentration in seeds was measured at 420 nm
using a Beckman Coulter DU 800 spectrophotometer (Beckman
Coulter, Inc., Brea, CA, USA).

Iron Determination

Iron concentration in seeds at maturity (R8 stage) was mea-
sured after acid wet digestion, extraction, and reaction of the
reduced ferrous iron with 1,10-phenanthroline. The measurement
of iron concentration was conducted according to the methods
(Bandemer and Schaible, 1944; Loeppert and Inskeep, 1966)
and was detailed by Bellaloui et al. (2013). Briefly, a random
sample of 2 g of dried ground seeds was acid digested. The
soluble constituents were dissolved in 2 M of HCI, and an aliquot
of 4 ml, containing 1 - 20 Ug of iron of the sample solution was
transferred into a volumetric flask of 25 ml and diluted to 5 ml
using 0.4 M HCI. A quinol solution of 1 ml was added to the 5
ml| diluted sample solution and mixed. Phenanthroline solution
[(25% (v/v) ethanol] of 3 ml and 5 ml of the tri-sodium citrate
solution (8% w/v) was added, and the solution was diluted and
incubated for 4 hours. The concentrations of Fe standard curve
was prepared in 0.4 M HCl and ranged from 0.0 to 4 pug'ml™
of Fe using FeSO4 salt. Iron concentration in samples was de-
termined by reading the absorbance at 510 nm using Beckman
Coulter DU 800 spectrophotometer.

Genetic Map Construction and QTL Identification

A genetic linkage map based on 5,376 Single Nucleotide
Polymorphism (SNP) markers was constructed using the Illumina
Infinium SoySNP6K BeadChip array. The RILs were genotyped
using 537 polymorphic, reliably segregating SNP markers. The
MD 96-5722 by Spencer genetic linkage map, constructed using
SoySNP6K lllumina Infinium BeadChip array, was previously re-
ported elsewhere (Akond et al., 2013) and used to identify QTL
for seed micronutrients accumulation. The Composite Interval
Mapping (CIM) of WinQTLCart 2.5 (http://statgen.ncsu.edu/
gtlcart/WQTLCart.htm) (Wang et al., 2014) was used for QTL
analysis. The Model 6 with four parameters for forward and
backward stepwise regression, 10 cM window size, 1 cM step
size and five control markers were selected for running WinQTL-
Cart (Wang, et al., 2014). The threshold with 1,000 permuta-
tions was used. Analysis of Means (CV, maximum and minimum
values, and SD) were carried out using Proc Means in SAS. Cor-
relations were conducted by SAS using PROC REG.

Results and Discussion

The variation of phenotypic trait (micronutrient concentrations
in seeds) was wide among RILs and the percentage difference
in micronutrient concentrations between lines was 128, 88, 161,
130, and 103 %, respectively for B, Cu, Fe, Mn, and Zn (Table
1). Some lines had higher concentrations of micronutrients than
either parent. Except for Cu, Spencer showed higher concentra-
tions of micronutrients than MD. The average concentrations of
RILs suggested that the segregation of these traits fits a normal
distribution model as the skewness values were <1.0 (data not
shown). Coefficient of variation for B, Fe, and Mn was higher
than for Cu and Zn, may be due to genotypic differences and
environmental factors effects. Frequency distribution of different
minerals generally showed normal distribution (Figures 1 and 2).

Correlation analysis showed that minerals had a significant
(P<0.0001) correlation with each other (Table 2), and the cor-
relation pattern was positive (Figure 3). The wide variation of
seed minerals concentrations in the studied RILs reflects the ef-
fects of genotypic differences of lines in the population. These
variations of nutrients concentrations among RIL individuals could
be due to genotype differences in nutrients uptake, efficiency,
demand, and nutrient translocation from leaves (source) to seed
(sink) (Lazof et al., 1994; Nielsen and Schjorring, 1983; Marsch-
ner, 2012). The results of the current study agreed with previous
reports that variation in minerals exists among soybean geno-
types grown under the same conditions (White and Broadley,
2009; Bellaloui et al., 2011). Recently, it was shown that con-
centrations of mineral in seed varied significantly even in sets
of near-isogenic lines having similar genetic backgrounds such

Table 1. Mean (concentrations, mg kg-1), standard deviation
(SD), maximum (Max), minimum (Min), coefficient of variation
(CV) in soybean RlLs of a cross between MD 96-5722 (MD) and

Spencer.
RILs Parents
Nutrient  Mean SD  Minimum  Maximum Differences CV MD Spencer
(%)
B 283 386 17.0 38.8 128.2 13.64 322 370
Cv 132 143 86 16.2 88.4 1087 149 124
Fe 590 768 320 83.4 160.6 1301 574 729
Mn 191 271 1.2 25.8 130.4 1416 187 19.1
In 511 558 320 65.2 103.8 1093 5777 627

Table 2. Pearson Correlation Coefficients (R and P values) be-
tween seed micronutrients in in MD 96-5722 and ‘Spencer’ RIL
populations of soybeant.
B Cu Fe Mn Zn
B 1

Cu R=0.61278 1

P<.0001
Fe R=0.35389 0.50086 1
P=0.0007 <.0001
Mn R=0.66771 0.50607 0.54386 1
P<.0001 <.0001 <.0001
Zn R=0.51559 0.69718 0.68122 0.48311 1
P<.0001 <.0001 <.0001 <.0001

P < 0.05 was used as level of significance.
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Figure 1. Frequency distribution for seed boron (B) (A),
copper (Cu) (B), and iron (Fe) (C) in the MD 96-5722 by
‘Spencer’ RIL population in soybean.

as maturity genes (Bellaloui et al.,, 2011). Characterizing the
factors controlling the uptake system of a genotype is still com-
plicated (Lazof et al., 1994) and further research is needed.

Genetic analysis showed that there were a total of 23 QTLs
detected on eight linkage groups (LGs) for seed Fe, Zn, B, Mn,
and Cu accumulation (Table 3; Figure 4). Five QTLs were detect-
ed for Fe (qIRO001- gIRO005) on LGs N, A1, K, J, and G. Seven
QTLs for Zn (qZINOO1-gZINOO7) were identified on LGs D1a, N,
F, B2, J, A1, and K. Two QTLs for B (qBOROO1 and gqBOR002)
were detected on LGs N and Al. Four QTLs were detected for
Mn (gMANOOT-gMANO0O04) on LGs N, A1, K, and J. Five QTLs
were detected for Cu (qCOPOOT- qCOP0O05) on LGs N, AT, K,
J, and G). It was observed that the four QTLs of Zn, Cu, Fe, and
Mn (on LG N, Chr 3; LG A1, Chr 5; LG J, Chr 16) were clustered
in a similar region of the linkage group (Figure 4). For example,
QTLs for Cu, Fe, Mn, and Zn on LG N (Chr 3) had peak position
of 15.80 cM and LOD support intervals 15.60-15.80 cM for all
of these nutrients. Similarly on LG A1 (Chr 5) with peak position
of 9.50 and LOD support interval of 8.50-9.50 cM; on LG J
(Chr 16, with the peak position of 12.00 cM for Fe and Mn, and
11 cM for Cu and Zn with LOD support interval 9.90-12.90 cM.
Generally, the LOD support intervals and LOD values varied,
depending on the linkage group and the chromosome where the
QTLs are associated with the markers (Table 3).
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Figure 2. Frequency distribution for seed manganed
(Mn) (A) and zinc (Zn) (B) in the MD 96-5722 by ‘Spen-
cer’ RIL population in soybean.

Previous research on genetic mapping associated with seed
micronutrients were reported, but very limited. For example, Di-
ers et al. (1992) studied QTLs associated with Fe efficiency in 13
F2-derived lines using restriction fragment length polymorphism
(RFLP) linkage map and used 272 markers for the genetic map-
ping. They found that three markers were significantly (P<0.01)
associated with Fe efficiency, two markers explained 31 and
25% of the variation for Fe-efficiency, and one marker ex-
plained 17% of the variation, although the results did not agree
with the tester set population. Others reported that segregation
from a cross of Fe-efficient and inefficient genotypes could be
explained by a single major gene and modifying genes (Ciansio
and Fehr, 1980), although it was concluded that the inheritance
of Fe efficient trait was quantitative and controlled by additive
gene action. Diers et al. (2000) studied the molecular charac-
terization of iron deficiency in soybean in different populations
(Pride B216 x A15; Anoka x A7) and could detect markers as-
sociated with Fe efficiency on LG B2, G, N, |, and H in Pride
B216 x A15, and on LG A1, N, in Anoka x A7 population. Two
QTLs were mapped on linkage groups Al and N, and the QTL on
LG A contributed 35.2% with LOD = 2.8, and the QTL on LG N
contributed 72.7% with LOD = 13.1. The two QTLs associated
with Fe efficiency were detected and mapped on LG | and N
and explained 80.7% of the phenotypic variation, with QTL on
LG N explained the largest total variation (68.8% with LOD
= 7.3). Lin et al. (1997) studied the iron efficiency in soybean
using total of 89 RFLP and 10 SSR markers in the Pride B216
x A15 population, and 82 RFLP, 14 SSR and 1 morphological
marker in the Anoka x A7 population. They also found differ-
ent QTLs related to Fe efficiency symptoms on LGs G, N, H, L,
B2, and I. They suggested a polygene mechanism for QTL with
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Figure 3. Patterns of correlation between seed micronutrients (Fe, Zn, B, Mn, and Cu) concentrations in a popula-
tion of 92 F5:7 recombinant inbred lines (RILs) using 5,376 Single Nucleotide Polymorphism (SNP) markers.

minor effects on six linkage groups. It was also found in another
population (Anoka x A7) that the contribution of one QTL on
LG N to the visual score variation ranged on an average of
68.8-72.7%. Recently, Peiffer et al. (2012) investigated candi-
date genes underlying QTL related to iron efficiency in soybean.
They found candidate genes underlying this QTL through mo-
lecular breeding, mapping, and transcriptome sequencing, and
were able to identify the genes underlying a QTL previously
identified by Lin et al. (1997), where an iron efficiency QTL on
chromosome 3 responsible for more than 70% of the phenotypic
variation was identified (Lin et al., 1997).

In a recent study, Mamidi et al. (2011) identified additional
Fe efficiency (tolerance to Fe deficiency) QTLs using SNP-based
genome-wide association mapping to detect genomic regions
associated with Fe tolerance. Using two populations, they found
42 and 88 loci (with minor allele frequency >10%), and most of
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these loci accounted for 74.5%-93.8% of the phenotypic varia-
tion in Fe tolerance. King et al. (2013) examined QTLs for Zn
and Fe in leaves and seed that were associated with Fe ef-
ficiency. They used a population of 92 F2-derived lines, and
SSR, RFLP, and BARCSOYSSR markers to construct the linkage
map for mapping Fe and Zn concentrations. They were able to
detect a major QTL for seed Fe accumulation on chromosome 20
that explained 21.5% of the variation, and this QTL was in the
marker interval pa 515-1-Satt239. They concluded that there
was a potential genetic link between Fe-efficiency and Fe accu-
mulation in the soybean seed. King et al. (2013) found QTLs re-
lated to seed Fe concentration on LG H (chr 12), M (Chr 7), D1a
(Chr 1), D2 (Chr 17), 1 (Chr 20). However, three Fe efficiency QTL
on chromosome 1 (Diers et al.,, 1992) and chromosome 20 (Lin
et al.,, 1997) were also reported. King et al. (2013) reported
that a genetic link for QTL of Fe efficiency being associated to
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QTL for Fe accumulation, and the positive allele comes from A7
with the genotypic average 80.70 [g Fe g' compared with the
inefficient parent Anoka (75.11 P Fe g™'). King et al., (2013)
found QTLs for Zn concentration on LGs H (Chr 12), L (Chr 19),
M (Chr 7), and G (Chr 18), and they reported that possibil-
ity of seed and leaf Zn and Fe concentration had similar chro-
mosomal regions, suggesting similar physiological and genetic
mechanisms for Zn and Fe accumulation and transport (King et
al, 2013; Garcia-Oliveira et al., 2009). Iron efficiency and Fe
accumulation appear to be governed by similar genes, provid-
ing useful information to further advance our understanding of
the genetic complexity of Fe homeostasis, transport, and mineral
accumulation in soybean (Ding et al., 2013). Positive and nega-
tive interactions between nutrients within the plant were previ-
ously reported (Marschner, 2012).

Based on SoyBase, there are 39 QTLs related to Fe efficiency
research were detected on 10 LG (A1, A2, D1q, G, |, N, BT,
B2, H, L) (SoyBase and the Soybean Breeder’s Toolbox, 2014).
These QTLs are all related to either chlorosis tolerance associ-
ated with visual scoring and chlorophyll symptoms or related
to different plant parts (leaves or roots), but none to seed ac-
cumulation. Our study showed that there were five QTLs on LGs
N, A1, K, J, and G, and all associated with nutrients accumulation
in seed, and these are new QTLs. Although there were enormous
efforts devoted to develop Fe deficient chlorosis resistance culti-
vars, releasing cultivars with high yield have been limited (Jessen
et al., 1988; King et al., 2013). In spite of the findings of King
et al. (2013) regarding Fe seed accumulation in seed on LGs H
(Chr 12), M (Chr 7), D1a (Chr 1), and D2 (Chr 17), our findings
still represent additional QTLs that were not previously detected
. For Zn nutrient, King et al (2014) detected QTLs for Zn seed
concentrations on LGs H (Chr 12), L (Chr 19), M (Chr 7), and G
(Chr 1). In our study, we were able to detect 7 QTLs for Zn con-
centrations in seeds on LGs D1b (Chr 1), N (Chr 3), A1 (Chr 5), K
(Chr 9), F (Chr 13), B2 (Chr 14, and J (Chr 16), and none of these
QTLs were previously identified in seeds. Searching SoyBase for
QTLs for Zn revealed that there were no QTLs found.

Our finding of four QTLs for Mn (QMANOOT-gMANOO4) on
LGs N, A1, K, and J are new additional QTLs as previous litera-
ture search revealed that there were no QTLs detected for Mn
accumulation in seeds, and what is available in the literature is
related to Mn toxicity using leaf and root necrosis. For example,
Kilo and Lightfoot (1996) used random amplified polymorphic
DNA (RAPD) markers, 100 RILs derived from the cross of ‘Essex’
and ‘Forrest’ (ExF, n=100), and identified QTLs associated with
Mn toxicity resistance. In another study, Kassem et al. (2004)
used 240 microsatellite markers, several RAPD markers, the
same ExF RIL population, and identified four new QTLs for resis-
tance to Mn toxicity. The QTL were additive, and three of them
explained about 58% of the total variation in root resistance to
Mn toxicity (Kassem et al., 2004). Search using SoyBase (2014)
resulted in only six QTLs on linkage groups B2, D2, I, C2, and
G, and all were not related to Mn in seed. Our findings on seed
Cu and B showed that there were five QTLs were detected for
seed Cu concentration (qCOP001- qCOP005) on LGs N, A1, K,
J, and G, and two QTLs for seed B concentration (QBOR0OO1 and
qBOR002) were detected on LGs N and A1, and all these QTLs

are new. Previous research showed that there were no QTLs for
seed Cu or B were reported in soybean in SoyBase or previously
reported elsewhere, although QTLs for Cu and B in other spe-
cies such rice (Garcia-Oliveira et al., 2009), wheat (Peleg et al.,
2009), Medicago truncatula (Sankaran et al., 2009), Brassica-
ceae shoot Mn, Fe, Zn, (Wu et al., 2008), shoot B, Fe, Cu, and Zn
(Liv et al., 2009) were previously reported. The QTLs clustering
observation, shown in our study, for seed Zn, Cu, Fe, and Mn in
similar regions of LGs may indicate common physiological and
genetic mechanisms controlling the uptake and accumulation of
these nutrients in seeds.

Conclusion

Quantitative trait loci for micronutrients accumulations in soy-
bean seed are almost non-existent. Our research detected QTLs
associated with the accumulation of Fe, Zn, B, Cu, and Mn in
seeds, and these QTLs are new, therefore, they are additional
QTLs, contributing to further knowledge of the genetic basis of
seed mineral nutrition. The clustering of QTLs associated with Zn,
Cu, Fe, and Mn in similar regions of LGs suggest possible com-
mon physiological and genetic mechanisms. Further research is
needed to confirm this observation by growing the population
under different environments. The positive correlation between
seed nutrients suggests that to obtain high need nutrition quali-
ties, it is crucial to maintain high levels of all nutrients in seed.
This research would allow to use these QTLs in marker-assistant
selection to improve seed nutrition trait and help breeding pro-
grams to efficiently select for appropriate levels of micronutri-
ents in seeds to meet human nutrition needs.
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