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Abstract 

 

Given a regular binary function f  on R2 with compact support D, we use translation to 

form a new binary function g  from  f  so that the image representation of ),( yxg  is made 

up of non-overlapping copies of D. Thus, g  is made up of discrete entities that are 

surrounded by regions of space. We devise a procedure that can determine the translation 

parameters using a minimum number of Radon projections 

g  of g . This model is a 

mathematical abstraction of an application of the Radon transform in Spectroscopy. 
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I. INTRODUCTION 

In [13], we addressed the problem of linear transformation of an image.  In this paper, we 

consider a similar problem of translation, namely:  we present a straightforward mathematical 

model of using few Radon projections to recover a two-dimensional nonnegative function 

),( yxg  whose image representation is made up of discrete entities surrounded by regions of 

space. A complete mathematical description of this model is given in the next section. This 

model is a resembling and a mathematical abstraction of an application of the Radon transform 

in NMR spectroscopy [1-9]. A survey on the subject is presented in [12]. 

Fundamentally, we may think of a 3-D NMR spectrum as being made up of tiny bright 

“stars”. The reconstruction problem would then be simpler than anatomical imaging (e.g. as a 

patient in a CAT scanner). The conventional NMR methodology is severely affected by the long 

duration of measurements that can sometimes take days [1], [2], and [3], where the objects being 

investigated may be unstable; experiencing some dynamic behavior or a chemical exchange is 

taking place...etc.  

Perhaps the realizations that the traditional  reconstruction method is not the most 

efficient way has led many authors to introduce alternative methods that are generally related to 

Radon transform: Kupce and Freeman [1], [2], [3], Kim and Szyperski [4], Kozminski and 

Zhukov [5], and many others including [7-9]. In [11], three methods were reviewed and a forth 

method is proposed. 

In particular, [1], [2], [3] used the Back-projection in their reconstruction scheme. This 

scheme can reconstruct a 3-D spectrum by processing one plane at a time. In a given plane, two 

orthogonal projections are measured and then back projected in the image space. This produces 

peaks of all conceivable locations in question. A tilted projection would then refine the solution 
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further. Figure1 explains this idea as was introduced in [1], [2], [3] which stated that the discrete 

nature of the NMR resonances implies a rapid convergence. Also, they admit that more 

projections may be needed for crowded  spectra, and that if the two orthogonal projection 

produced N  and M  peaks respectively, then we have MN   equations of NM  unknown 

which can be a notoriously underdetermined system (if N  and M  are large).  

As said earlier, our model is a mathematical idealization of this problem, in which we 

show that two projections are still sufficient to find all conceivable locations without using back 

projections. We then subject these potential solutions to further tests using other projections. 

Indeed, the Back-projection approach is not always able to find these locations as was claimed in 

[1] and shown in Figure 1. For example, Fig 2d is the Back-projection image for the image 

shown in Fig2a using only two projections (with 0 ,
2


 ), which are shown in Fig 2b and 2c. 

Fig 2e, however, is the Back-projection image using 20 projections. We organize this paper as 

follows: in Section 2 we build our model of a two-dimensional spectrum. In Section 3, we 

present a mathematical solution that we devised to recover a spectrum using a few Radon 

Projections. In Section 4, we present further discussion and remarks. We conclude this paper 

with our conclusion. In the last part of this introduction we introduce notation and basic tools 

that will be used in this work: Given a suitable real valued function f  on the plane 2R , we will 

write the Radon transform of f  in the ordinary form [10]:  

   dsspspfpf 







  cos sinsin cos   ,                                                               (1)                                                                  

Among the known properties of this transform we recall the translation rule: 

If      00 ,, yyxxfyxg  , where  0x  and  0y  are real scalars, then    
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    






  sincos 00 yxpfpg                                                                                      (2)                                                                                                                

A common elementary function that we are using in this work is the unit cylinder:  




















otherwise  0

2

1
 if   1

:) ,(

2

22 yx
yxc                                                                                               (3)                                                                                                        

Using (1) we find 

)( pc

 =









otherwise            0

2

1
 if 41 2 pp

                                                                                                      (4)                                                                                                                             

                                   

Figure 1. Schematic diagrams showing the “Superposition of Back-projection” introduced in [1], 

[2], and [3]. 
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II. A Model of Two-Dimensional Spectrum 

Let f  be a regular binary function on the plane R2 with compact support D : 

 


 


otherwise.     0

Dy)(x, if     1
, yxf                                                                                             (5)  

We assume that the center of mass of D coincides with the origin (0, 0). We use f  to 

define a family of binary images of the form 

),( yxg 



K

k

kk yyxxf
1

),(                                                                                       (6)     

where ),( 11 yx , …, ),( KK yx  are pairs of positive real numbers, such that the image 

representation of ),( yxg  is made up of non-overlapping copies of D. With f in hand, we address 

the question of recovering ),( yxg  using a minimum number of projections 

g . Notice that using 

(2) we write    

  


 
K

k

kk yxpfpg
1

)]sincos([                                                                       (7)                            

It is possible to assume that  Kxxx  ...21  and Kyyy  ...21 . We will write any solution 

),( 11 yx … ),( KK yx  (that is consistent with (6)) in the form 

   =  









K

K

yy

xxx

       .   .   .   .   y    

    

2 1

           .       .     .        .        21

 

We show an example in Fig 2a, where the function ),( yxg  is formed using (6), with 

),( yxf is the unit cylinder (3) and the parameters ),( kk yx  are as follows: 

(1,6), (1, 4.5), (1,2.1), (1.5,3), (2.2,5.5) (2, 2), (2.2, 4), (3, 1.5), (3, 2.6), (3.5, 5.5), (3.7, 3.5), (4, 

4.5), (4.1, 2), (5, 4), (5, 6), (5.5, 3), (7, .5). 
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                             (a)                                             (b)                                        (c)                                              

                   

                                     (d)                                           (e)                                              

Figure (2). An example of ),( yxg  formed from 17 non- overlapping translations of the unit 

cylinder (3). (b), (c) show  

0g  and  


2

g   of  ),( yxg  in (a). (d) Density plot of the Back-

projection image of  ),( yxg  using two projections. (e) Density plot of the Back-projection image 

of  ),( yxg  using 20 projections. 

 

III. Recovering a Spectrum Using Few Radon Projections 

We want to determine the parameters ),( kk yx that are involved in equation (6). We want 

to accomplish this goal using 

f  and 

g  with the minimum number of projections 

g .  We 

devised a method to recover these parameters that we now describe. Observe from (7) that  

K  
















dppf

dppg

)(

)(

0

0

                                                                                                   (8)  

We first show that the parameters Kxxx  ...21  can be obtained using 

0f  and 

0g . 
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We also utilize 


2

f  and 


2

g  to produce a list of numbers  

2

L :  Kyyy      ...       21                                                                                         (9)   

that are consistent with (6). To find Kxxx ..., , , 21 , assume that the support of   

0g  is contained in 

some closed interval
0I . Let  v  =  )  .., . , ,( 21 Kvvv  be a vector of K  components with 

0Ivk   and 

define the real-valued function )(xgv
on 

0I such that  

)(xgv  = 





K

k

kvxf
1

0 )(                                                                                               (10)  

In view of these considerations, we defined the objective real-valued function G  on the 

K -space 
K

I 0
 such that  

)(vG     =  1v0 || g - g ||


                       

              = 


0

dx | )( - )( | 0

I

v xgxg                                                                               (11)                                                        

Notice that if  v  is formed using the numbers Kxxx ..., , , 21  from equation (6) then,

0)( vG .  We can numerically find v in 
K

I 0  that minimizes G (e.g. using Nelder-Mead Simplex 

Method). Since 

0g  is obtained experimentally, we may write    

)(vG  =  


x

xx | )(g )(g | v0
                                                                                     (12)                                                             

where  x  values are the x -coordinates from the sample of the known 

0g .  
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To find the list 
2

L in (9), we simply repeat the minimization process using equations (10) and 

(11) with 

0g  is replaced by 


2

g  and 

0f  is replaced by


2

f . With the parameters Kxxx ..., , , 21 , 

and  
2

L  are in hand, we work with the family  of all possible solutions: 



















































 Llist        theofn    permutatioany     is

 ,y .,  .  .,y

 with   y    ..  . y 

      x.  .  .    

 

  

2

π

*

K

*

1

K
**

2

*

1

K21

y

xx

                                                                         (13)                                                                     

Notice that the unique solution of our problem exists in . Consider a third projection, 



g  of ),( yxg , we use 

g  to test members of    as follows: assume that the support of  

g  is 

contained in some closed interval I .For  , define the real-valued function  )(xg  on I : 

)(xg  =   ])sin  cos([
1







K

k

kk yxxf                                                                   (14)                                                                 

where  ),( kk yx  are from   , and  Ix . Notice that we are using (7) in the definition of g . 

Also, we define the objective real-valued function    on : 

)(  =  1|| g - g || 


 

= 






I

xgxg dx | )( - )( |                                                                               (15)                                                                                 

If )( > 0 , (more accurately, if )( is substantially larger than our error of computing) then   

will be eliminated from . Those members of  who survive this test will be retested using (14) 

and (15) but with a different projection 

g  of ),( yxg .  This elimination process is repeated until 

only one member is left in . 







 


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IV. EXPERIMENTS AND DISCUSSION 

We start this section with some particular examples. The convergence of our process to 

one solution depends on the nature of ),( yxg . Consider these instances: 

(i)  If ),( yxg from (6) is formed from the cylinder (3) and parameters {(1, 1), (2, 2)} as shown in 

Fig 3a, then our procedure produces = 































 

1  2

 2  1
  , 

2  1

2  1

 

This is due to the fact that both images in Fig 3a and Fig 3b have the same 

0g  and


2

g . A 

third projection (


4

g  ) solves the problem. 

(ii) Repeating the above example with parameters {(1, 1), (1, 2), (2, 3), (3, 1), (3, 2)}, then:  

kx  Parameters are:   1, 1, 2, 3, 3; 

2

L  = 1, 1, 2, 2, 3, and  

 = 





































 L ofn permutatioany  is , ,  .  .,y 

  with  , 
     .  .  . ,y

3   3   2   1   1

2

5
**

1

5
*

1
*

y

y

 

For instance, 1 = 








2   1   3  2   1

3   3   2   1   1
  and  2  =  









2   1   2   1   3

3   3   2   1   1
 are two members of   that 

correspond to the images in Fig 4a and Fig 4b respectively. Fig 4c, d show  

0g  and 


2

g  of these 

images. Although one more projection was sufficient to solve the problem, we make this 

observation:  has 120 members from which “24 solution” survived the test from (15) (using






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

4

g ).  However, because the set 521 ..., , , xxx   and  
2

L  contain repeated elements, then some of 

these 24 candidates are identical, some are equivalent in the sense that they appear in different 

order (yet they produce the same ),( yxg  ), and some of them are false (contains duplicated 

columns 








k

k

y

x
, which can’t be a solution since ),( yxg  is made up of   non- overlapping entities).  

With these considerations, the “24 solutions” can easily be reduced to the one true solution. 

(iii) Applying this procedure on the function ),( yxg  that was shown in Fig 2a, we find that the 

calculation converge to one solution using  

0g  , 


2

g  , and 


4

g . 

Perhaps if the image presentation of g from (6) is made up of entities that are surrounded 

by extensive regions of space, as accepted in [1],[2],[3], then the superposition back projection of  



0g  and 


2

g  would  produce 
2K potential peaks as already shown in figure 1, indicating that the 

question of  
2K potential peaks is a trivial one. However, in a more complex situation, this 

superposition back-projection might fall. For instance, in the back-projection image of Figure 2d, 

it is possible that some background pixels have a higher grey level than some of the “good 

pixels”. 

   

                    (a)                                           (b)   

 

Figure 3. (a) ),( yxg from (6) is formed from the cylinder (3) and parameters {(1,1), (2,2)}. (b) 

Possible solution since 

0g  and  


2

g  are identical for both images. 
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                   (a)                                                     (b) 

 

                 

                 (c)                                                             (d) 

 

Figure 4. (a) ),( yxg from (6) is formed from the cylinder (3) and parameters {(1, 1), (1, 2), (2, 

3), (3, 1), (3, 2)}. (b) A possible solution (c,), and (d) 

0g  and  


2

g   for both images 

 

V. CONCLUSION 

In this paper, we considered a binary function g  formed from a binary function f   with 

compact support. The image representation of ),( yxg  is made up of non-overlapping translates 

of f .  We introduced procedure that can recover the translation parameters using a minimum 

number of Radon projections 

g  of g . 
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