Journal of Mathematical Sciences & Computer Applications 1 (2): 56–71, 2011. doi: 10.5147/jmsca.2011.0040

On Λ^{λ} -Homeomorphisms In Topological Spaces

M. Gilbert Rani¹ and S. Pious Missier²

¹ Post Graduate Department of Mathematics, V.O.C. College, Tuticorin, India; ² Post Graduate Department of Mathematics, V.O.C. College, Tuticorin, India E-mail: <u>gil.anto@yahoo.in</u>

Received: February 7, 2011 / Accepted: March 23, 2011

Abstract

In this paper, we first introduce a new class of closed map called Λ^{λ} -closed map. Moreover, we introduce a new class of homeomorphism called Λ^{λ} - Homeomorphism, which are weaker than homeomorphism. We also introduce Λ^{λ^*} - Homeomorphisms and prove that the set of all Λ^{λ} - Homeomorphisms form a group under the operation of composition of maps. 2000 Math Subject Classification: 54C08, 54D05.

Keywords and Phrases: Λ^{λ} -closed sets, Λ^{λ} -open sets, Λ^{λ} - continuous function, Λ^{λ} - irresolute map, Λ -g-closed set, Λ^{λ} -homeomorphism, ${\Lambda^{\lambda}}^*$ - homeomorphism.

1. Introduction

The notion homeomorphism plays a very important role in topology. By definition, a homeomorphism between two topological spaces X and Y is a bijective map $f: X \to Y$ when both and f and f^{-1} are continuous. Maki. et al. [5] introduced

g-homeomorphisms and gc-homeomorphisms in topological spaces.

In this paper, we first introduce Λ^{λ} - closed maps in topological spaces and then we introduce and study Λ^{λ} -homeomorphisms, which are weaker than homeomorphisms. We also introduce Λ^{λ^*} - homeomorphisms. It turns out that the set of all Λ^{λ^*} - homeomorphisms forms a group under the operation composition of functions.

2. Preliminaries

Throughout this paper (X, τ) and (Y, σ) represent topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X, τ) , Cl (A), Int (A) ant X - A denote the closure of A, the interior of A and the complement of A in X, respectively.

We recall the following definitions and some results, which are used in the sequel. **Definition 2.1:** A subset A of a space (X, τ) is called:-

(1) λ - closed [1] if A = B \cap C, where B is a Λ - set and C is a closed set.

The complement of λ – closed set is called a λ – open set.

(2) Λ -g-closed [2] if Cl_{λ} (A) $\subseteq U$, wherever A $\subseteq U$, U is λ -open, where Cl_{λ} (A)

[4] is called the λ - Closure of A. The complement of Λ -g-closed set is called a Λ -g-closed – open set.

The family of all λ - open subsets of a space (X, $\tau)\,$ shall be denoted by

λΟ (Χ, τ).

Definition 2.2:

A subset A of a space (X, τ) is called a generalized closed (briefly g-closed) set [6] if Cl (A) \subset U whenever A \subset U and U is open in (X, τ).

Definition 2.5: A function f: (X, τ) \rightarrow (Y, σ) is called :

(1) λ -continuous [1] if f^{-1} (V) is λ -open in (X, τ), for every open set V in (Y, σ).

(2) λ -irresolute [3] if f^{-1} (V) is λ -open in (X, τ), for every λ open set V in (Y, σ).

(3) g-continuous [6] if f^{-1} (V) is g-closed in (X, τ) for every g-closed set V in (Y, σ).

(4) gc-irresolute [6] if f^{-1} (V) is g-closed in (X, τ) for every g-closed set V in (Y, σ).

(5) λ -closed [3] if f (V) is λ -closed in (Y, σ), for every closed set V in (X, τ).

Definition 2.6: A function $f : (X,\tau) \rightarrow (Y,\sigma)$ is called g-open [6] if f(V) is

g-open in (Y, σ) , for every g-open set V in (X, τ) .

Definition 2.7: A bijective function $f : (X,\tau) \rightarrow (Y,\sigma)$ is called a:

(1) generalized homeomorphism (briefly g-homeomorphism) [7] if f is both g-continuous and gopen.

(2) gc-homeomorphism [7] if both f and f^{-1} are gc-irresolute maps.

3. Λ^{λ} -Closed Sets

Definition 3.1: A subset A of a topological space (X, τ) is called :

(1) Λ_*^{λ} - set if $A = A^{\Lambda_*^{\lambda}}$, where $A^{\Lambda_*^{\lambda}} = \bigcap \{B : B \supset A, B \in \lambda_O(X, \tau)\}$

(2) Λ^{λ} - closed set if A= L \cap F, where L is Λ^{λ}_{*} - set and F is λ - closed.

The complement of $\Lambda^{\scriptscriptstyle\!\lambda}_*$ -set and $\Lambda^{\scriptscriptstyle\!\lambda}$ -closed set is $V^{\scriptscriptstyle\,\lambda}_*$ -set and $\Lambda^{\scriptscriptstyle\!\lambda}$ -open set respectively.

Proposition 3.2:

1) [3]Every closed (resp. open) set is λ -closed (resp. λ -open) set.

2) Every λ -closed (resp. λ -open) set is Λ^{λ} -closed (resp. Λ^{λ} -open) set.

Definition 3.3:A function $f : (X, \tau) \rightarrow (Y, \sigma)$ is called :

1) Λ -g-continuous if f^{-1} (V) is Λ -g-open in (X, τ), for every open set V in (Y, σ).

2) Λ^{λ} -continuous if f^{-1} (V) is Λ^{λ} -open in (X, τ), for every open set V in (Y, σ).

- 3) $\Lambda^{\lambda} \lambda$ -continuous if f^{-1} (V) is Λ^{λ} -open in (X, τ), for every λ -open set V in (Y, σ).
- 4) Λ^{λ} -irresolute if f^{-1} (V) is Λ^{λ} -open in (X, τ), for every Λ^{λ} -open set V in (Y, σ).
- **5)** Λ^{λ^*} -open if f (V) is Λ^{λ} -open in (Y, σ) , for every Λ^{λ} -open set V in (X, τ) .

Definition 3.4: Let (X,τ) be a space and $A \subset X$. A Point $x \in X$ is called

 Λ^{λ} -cluster point of A if for every Λ^{λ} -open set U of X containing x, A \cap U $\neq \phi$. The set of all

 Λ^{λ} -cluster points is called the Λ^{λ} - closure of A and is denoted by $Cl^{\Lambda^{\lambda}}$ (A).

Theorem 3.5: If $f : (X,\tau) \rightarrow (Y,\sigma)$ is Λ^{λ} - irresolute then the map f is

 $\Lambda^{\scriptscriptstyle\!\lambda}$ - continuous.

Proof: Let f be Λ^{i} - irresolute Let V be an open set in (Y, σ). By Proposition 3.2, V is Λ^{i} -open in

(Y, σ). Since f is Λ^{λ} - irresolute, f⁻¹(V) is Λ^{λ} -open in (X, τ). Hence f is Λ^{λ} - continuous.

Proposition 3.6: Let A and B be a subset of a topological space (X,τ) . The following properties hold:

- (1) $A \subset Cl^{\Lambda^{\lambda}}(A) \subset Cl^{\lambda}(A)$
- (2) $Cl^{\Lambda^{\lambda}}(A) = \bigcap \{F \in \Lambda^{\lambda}C(X, \tau) / A \subset F\}$
- (3) If $A \subset B$ then $Cl^{\Lambda^{\lambda}}$ (A) $\subset Cl^{\Lambda^{\lambda}}$ (B)
- (4) A is Λ^{λ} closed if and only if A= $C l^{\Lambda^{\lambda}}$ (A).
- (5) $Cl^{\Lambda^{\lambda}}$ (A) is Λ^{λ} -closed.

Proof:

(1) Let $x \notin Cl^{\Lambda^{\lambda}}(A)$. Then x is not a Λ^{λ} -cluster point of A. So there exists a Λ^{λ} -open set U containing x such that $A \cap U = \phi$ and hence $x \notin A$.

Then $Cl^{\Lambda^{\lambda}}(A) \subset Cl^{\lambda}(A)$ follows from Proposition 3.2.

(2) Suppose $x \in \bigcap \{F/A \subset F \text{ and } F \text{ is } \Lambda^{\lambda} - closed\}$. Let U be a Λ^{λ} -open set containing x such that $A \cap U = \phi$. And so $A \subset X - U$. But X-U is Λ^{λ} -closed and hence $Cl^{\Lambda^{\lambda}}(A) \subset X - U$. Since $x \notin X - U$, we obtain $x \notin Cl^{\Lambda^{\lambda}}(A)$

which is contrary to the hypothesis. Hence

 $Cl^{\Lambda^{\lambda}}(A) \supset \cap \{F \mid A \subset F \text{ and } F \text{ is } \Lambda^{\lambda} - closed\}.$

Suppose that $x \in Cl^{\Lambda^{\lambda}}(A)$, i.e., that every Λ^{λ} -open set of X containing x meets

A. If $x \notin \bigcap \{F \mid A \subset F \text{ and } F \text{ is } \Lambda^{\lambda} - closed\}$, then there exists a Λ^{λ} -closed set

F of X such that $A \subset F$ and $x \notin F$. Therefore $x \in X - F \in \Lambda^{\lambda}O(X,\tau)$. Hence X-F is a Λ^{λ} -open set of X containing x, but $(X - F) \cap A = \phi$. But this is a contradiction. Hence $Cl^{\Lambda^{\lambda}}(A) \subset \cap \{F/A \subset F \text{ and } F \text{ is } \Lambda^{\lambda} - closed\}$. Thus,

 $Cl^{\Lambda^{\lambda}}(A) = \bigcap \{F \mid A \subset F \text{ and } F \text{ is } \Lambda^{\lambda} - closed\}.$

(3) Let $x \notin Cl^{\Lambda^{\lambda}}(B)$. Then there exists a Λ^{λ} -open set V containing x such that $B \cap V = \phi$. Since $A \subset B, A \cap V = \phi$ and hence x is not a Λ^{λ} -cluster point of A. Therefore $x \notin Cl^{\Lambda^{\lambda}}(A)$.

(4) Let A is Λ^{λ} closed. Let $x \notin A$ Then x belongs to the Λ^{λ} -open X-A. Then a

 $\Lambda^{\scriptscriptstyle \lambda}$ -open set X-A containing x and $A \cap (X - A) = \phi$. Hence $x \notin Cl^{\Lambda^{\scriptscriptstyle \lambda}}(A)$. By

(1), we get $A = Cl^{\Lambda^{\lambda}}(A)$. Conversely, Suppose $A = Cl^{\Lambda^{\lambda}}(A)$. By (2)

 $\mathsf{A}= \cap \ \{\mathsf{F} \in \Lambda^{\scriptscriptstyle \lambda} \mathsf{C} \ (\mathsf{X}, \, \tau) / \ \mathsf{A} \subset \mathsf{F} \}. \\ \mathsf{Hence} \ \mathsf{A} \ \text{is} \ \Lambda^{\scriptscriptstyle \lambda} \text{-closed} \ .$

(5) By (1) and (3), we have $Cl^{\Lambda^{\lambda}}(A) \subset Cl^{\Lambda^{\lambda}}(Cl^{\Lambda^{\lambda}}(A))$. Let

 $x \in Cl^{\Lambda^{2}}(Cl^{\Lambda^{2}}(A))$. Hence x is a Λ^{2} -cluster point of $Cl^{\Lambda^{2}}(A)$. That implies

for every Λ^{λ} -open set U containing x, $Cl^{\Lambda^{\lambda}}(A) \cap U \neq \phi$.Let

 $p \in Cl^{\Lambda^{\lambda}}(A) \cap U$. Then for every Λ^{λ} -open set G containing $p, A \cap G \neq \phi$, since

 $p \in Cl^{\Lambda^{i}}(A)$.Since U is Λ^{i} -open and $x, p \in U$, $A \cap U \neq \phi$. Hence

 $x \in Cl^{\Lambda^{\lambda}}(A). \text{ Hence } Cl^{\Lambda^{\lambda}}(A) = Cl^{\Lambda^{\lambda}}(Cl^{\Lambda^{\lambda}}(A)). \text{By (4), } Cl^{\Lambda^{\lambda}}(A) \text{ is } \Lambda^{\lambda} \text{ -closed.}$

Definition 3.7: A subset A of a topological space (X, τ) is said to be λ -locally closed if $A = S \cap P$, where S is λ -open in X and P is λ -closed in X.

Lemma 3.8: Let A be Λ^{λ} -closed subset of a topological space (X, τ) . Then we have,

1) $A = T \cap Cl^{\lambda}(A)$, where T is a Λ^{λ}_{*} -set.

$$A = A^{\Lambda^{2}_{*}} \cap Cl^{\lambda}(A)$$

Lemma 3.9: A subset $A \subseteq (X, \tau)$ is $\Lambda - g - closed$ iff $Cl^{\lambda}(A) \subseteq A^{\Lambda^{\lambda}_{*}}$.

Proposition3.10: For a subset A of a topological space the following conditions are equivalent.

- (1) A is λ closed.
- (2) A is Λ -g-closed and λ -locally closed
- (3) A is Λ -g-closed and Λ^{λ} closed.

Proof: (1) \Rightarrow (2) Every λ -closed set is both Λ -g-closed and λ -locally closed.

 $(2) \Rightarrow (3)$ This is obvious from the fact that every λ -locally closed is a Λ^{λ} -closed.

 $(3) \Rightarrow (1) \text{ A is } \Lambda \text{ -g-closed , so by Lemma 3.9, } Cl^{\lambda}(A) \subseteq A^{\Lambda^{\lambda}_{*}} \text{ . A is } \Lambda^{\lambda} \text{ -closed, so by Lemma 3.8,}$ $A = A^{\Lambda^{\lambda}_{*}} \cap Cl^{\lambda}(A) \text{ . Hence } A = Cl^{\lambda}(A) \text{ , i.e., A is } \lambda \text{ -closed.}$

4. Λ^{λ} -closed Maps

In this section, we introduce Λ^{λ}_{*} - closed maps. Λ^{λ}_{*} - open maps, Λ^{λ} -closed maps, Λ^{λ} -open maps, $\Lambda^{\lambda^{*}}$ -closed maps and $\Lambda^{\lambda^{*}}$ -open maps.

Definition 4.1:

A map $f : (X,\tau) \rightarrow (Y,\sigma)$ is said to be a Λ^{λ}_{*} -closed map if the image of every closed set in (X,τ) is V^{λ}_{*} -set in (Y,σ) .

Example 4.2:

(b) Let X=Y= {a, b, c, d},
$$\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$$
 and
 $\sigma = \{\phi, Y, \{d\}, \{b, c, d\}\}$. Let $f : (X,\tau) \rightarrow (Y,\sigma)$ be the identity

f ({c, d}) = {c, d} is not a V_*^{λ} -set. Hence f is not a Λ_*^{λ} -closed map.

Definition 4.3: A map $f : (X,\tau) \rightarrow (Y,\sigma)$ is said to be Λ^{λ} -closed if the image of every closed set in (X,τ) is Λ^{λ} -closed in (Y,σ) .

map

Example 4.4:

(a) Let X=Y = {a, b, c, d, e}, τ = {φ, X, {a}, {d,e}, {a, d, e}, {b, c, d, e}} and
σ = {φ, Y, {b, c}, {b, c, d}, {a, b, d, e}}. Define a map f : (X,τ)→(Y,σ) by
f (a) = d, f (b) =e, f (c) = a, f (d) =c and f (e) =b. Then f is a Λ^λ-closed map.
(b) Let X=Y= {a, b, c, d}, τ = {φ, X, {a, b}, {a, b, c}} and

 $\sigma = \{\phi, Y, \{a\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}\}$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be an identity map. $f (\{c, d\}) = \{c, d\}$ is not a Λ^{λ} -closed set. Hence f is not a Λ^{λ} -closed map.

Definition 4.5: A map $f : (X,\tau) \rightarrow (Y,\sigma)$ is said to be Λ -g-closed if the image of every closed set in (X,τ) is Λ -g-closed in (Y,σ) .

Example 4.6:

(i) Let X=Y = {a, b, c, d}, τ = {φ, X, {d}, {a, d}, {c, d}, {a, c, d}} and σ = {φ, Y, {a, b}, {c, d}}. Define an identity map f : X→Y is Λ-g-closed.
(ii) Let X=Y={a, b, c, d}, τ = {φ, X, {a}, {a, c}, {a, c, d}} and σ = {φ, Y, {d}, {c, d}, {a, c, d}}. Define a map f : (X,τ)→(Y,σ) by f (a)=d, f b)=b, f (c)=a, f (d)=c. But {b, c} is not a Λ-g-closed. Hence f is not Λ-g-closed.

Definition 4.7:

A map $f : (X,\tau) \rightarrow (Y,\sigma)$ is said to be $\Lambda^{\lambda} - \lambda$ - closed if the image of every λ -closed set in (X, τ)

is Λ^{λ} -closed in (Y, σ).

Example 4.8:

The function f which is defined in example 4.2(a) is $\Lambda^{\lambda} - \lambda - closed$.

Proposition 4.9:

Every Λ^{λ} - λ -closed map is a Λ^{λ} -closed map.

Proof:

Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a $\Lambda^{\lambda} - \lambda$ -closed map. Let B be a closed set in (X, τ) and hence B is a λ -

closed set in (X, τ). By assumption f (B) is Λ^{λ} -closed in (Y, σ). Hence f is a Λ^{λ} -closed map.

Theorem 4.10:

Let $f : (X,\tau) \rightarrow (Y,\sigma)$ and $g : (Y,\sigma) \rightarrow (Z,\eta)$ be two mappings such that their composition gof: $(X,\tau) \rightarrow (Z,\eta)$ be a Λ^{λ} -closed mapping. Then the following statements are true if

1) f is continuous and surjective then g is Λ^{λ} -closed.

2) g is Λ^{λ} -irresolute and injective then f is Λ^{λ} -closed.

3) f is g-continuous, surjective and (X, au) is a $T_{1/2}$ – space then g is Λ^{λ} -closed

Proof:

1) Let A be a closed set in (Y, σ). Since f is continuous, $f^{-1}(A)$ is closed in (X, τ) and since gof is Λ^{λ} -closed, (gof) $(f^{-1}(A))$ is Λ^{λ} -closed in (Z,η) . i.e., g (A) is Λ^{λ} -closed in (Z,η) .

2) Let B be a closed set of (X, τ) . Since gof is Λ^{λ} -closed, (gof) (B) is Λ^{λ} -closed in (Z, η) . Since g is Λ^{λ} -irresolute g⁻¹((gof) (B)) is Λ^{λ} -closed in (Y, σ).i.e., f (B) is Λ^{λ} -closed in (Y, σ), Since g is injective. Thus f is a Λ^{λ} -closed map.

3) Let A be a closed set of (Y,σ) . Since f is g-continuous, $f^{-1}(A)$ is g- closed in (X,τ) . Since (X,τ) is a $T_{1/2}$ -space, $f^{-1}(A)$ is closed in (X,τ) and so as in (i), g is a Λ^{λ} -closed map.

Theorem 4.11:Let $f : (X, \tau) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (Z, \eta)$ be two mappings such that their composition gof: $(X, \tau) \to (Z, \eta)$ be a $\Lambda^{\lambda} - \lambda$ -closed mapping. Then the following is true if

1) f is λ -irresolute and surjective then g is Λ^{λ} - λ -closed.

2) g is Λ^{λ} -irresolute and injective then f is Λ^{λ} - λ -closed.

Proof:

1) Let A be a λ -closed set of (Y, σ). Since f is λ - irresolute, $f^{-1}(A)$ is λ -closed in (X, τ) and since gof is $\Lambda^{\lambda} - \lambda - \text{closed}$, (gof) ($f^{-1}(A)$) is $\Lambda^{\lambda} - \text{closed}$ in (Z, η).

i.e., g(A) is Λ^{λ} -closed in (Z, η). Hence g is $\Lambda^{\lambda} - \lambda$ -closed.

2)Let B be a λ -closed set of (X, τ) . Since gof is $\Lambda^{\lambda} - \lambda - \text{closed}$, (gof) (B) is $\Lambda^{\lambda} - \text{closed}$ in (Z, η) . Since g is Λ^{λ} -irresolute g⁻¹((gof) (B)) is Λ^{λ} -closed in (Y, σ) .i.e., f (B) is

 Λ^{λ} -closed in (Y, σ), since g is injective. Thus f is Λ^{λ} - λ -closed map.

Definition 4.12:

A map $f: (X, \tau) \to (Y, \sigma)$ is said to be a Λ^{i} -open map if the image f (A) is Λ^{i} -open in (Y, σ) for each open set A in (X, τ) .

Proposition: 4.13:

For any bijection $f: (X, \tau) \rightarrow (Y, \sigma)$, the following statements are equivalent.

1) $f^{-1}:(Y,\sigma) \to (X,\tau)$ is Λ^{λ} -continuous.

2) f is a Λ^{λ} -open map and

3) f is a Λ^{λ} -closed map.

Proof:

(1) \Rightarrow (2): Let U be an open set of (X, τ) . By assumption $(f^{-1})^{-1}(U) = f(U)$

is Λ^{λ} -open in (\mathbf{Y}, σ) and so f is Λ^{λ} -open.

(2) \Rightarrow (3): Let F be a closed set of (X, τ) . Then X-F is open in (X, τ) . By assumption, f (X-F) is Λ^{2} -open in (Y, σ) and therefore f (X-F) =(Y-f (F)) is Λ^{2} -open in (Y, σ) and therefore f (F) is Λ^{2} -closed in (Y, σ) . Hence f is Λ^{2} -closed.

(3) \Rightarrow (1) :Let F be a closed set of (X, τ) . By assumption, f (F) is Λ^{i} -closed in

 $(Y \sigma)$. But $f(F) = (f^{-1})^{-1}(F)$ and therefore f^{-1} is Λ^{2} -continuous on Y.

Definition 4.14: A map $f: (X, \tau) \to (Y, \sigma)$ is said to be a $\Lambda^{\lambda} - \lambda$ -open map if the image f(A) is Λ^{λ} -open in $(Y \sigma)$ for each λ -open set A in (X, τ) .

Proposition: 4.15:

For any bijection $f:(X,\tau) \to (Y,\sigma)$, the following statements are equivalent.

- 1) $f^{-1}:(Y,\sigma) \to (X,\tau)$ is $\Lambda^{\lambda} \lambda$ -continuous.
- 2) f is a $\Lambda^{\lambda} \lambda$ -open map and

3) f is a $\Lambda^{\lambda} - \lambda$ -closed map

Proof:

(1)
$$\Rightarrow$$
 (2) Let U be an λ -open set of (X, τ) . By assumption $(f^{-1})^{-1}(U) = f$ (U)

is $\Lambda^{\scriptscriptstyle\lambda}$ -open in (\mathbf{Y},σ) and so f is $\Lambda^{\scriptscriptstyle\lambda}$ - λ -open.

(2) \Rightarrow (3) Let F be a λ - closed set of (X, τ) . Then X- F is λ - open in (X, τ) . By assumption, f (X-F) is Λ^{λ} -open in (Y, σ) i.e., f (X-F) = Y- f (F) is Λ^{λ} -open in (Y, σ) and there f (F) is Λ^{λ} -closed in (Y, σ) . Hence fis Λ^{λ} -closed.

(3) \Rightarrow (1) Let F be a λ –closed set in (X, τ) . By assumption. f (F) is

 $\Lambda^{\!\scriptscriptstyle\lambda}$ - λ - closed in (\mathbf{Y},σ) . But f(F) = (f ^1)-1 (F) and therefore f ^1 is

 Λ^{λ} - λ - continuous on Y.

Definition 4.16: (i) A map $f: (X, \tau) \to (Y, \sigma)$ is said to be a λ^* -closed map if the image of f (A) is λ -closed in (Y, σ) for every λ -closed set A in (X, τ) .

(ii) A map $f: (X, \tau) \to (Y, \sigma)$ is said to be a Λ^{λ^*} -closed map if the image f (A) is Λ^{λ} -closed in (Y, σ) for every Λ^{λ} -closed set A in (X, τ) .

(iii) A map $f: (X, \tau) \rightarrow (Y, \sigma)$ is said to be a $\Lambda - gc$ -closed if the image f (A)

is $\Lambda - g$ -closed in (Y, σ) for every $\Lambda - g$ -closed set A in (X, τ) .

Example: 4.17

(i) Let $X = Y = \{a, b, c, d, e\}, \tau = \{\phi, X, \{a\}, \{a, b, c\}\}$ and $\sigma = \{\phi, Y, \{a\}, \{b\}, \{a, b\}\}$. Define a map $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = a, f(b) = c, f(c) = d, f(d) = b and f(e) = e. Then f is λ^* -closed as well as $\Lambda^{\lambda*}$ -closed.

Remark 4.18:

Since every closed set is a Λ^{λ} -closed set we have every $\Lambda^{\lambda*}$ - closed map is a Λ^{λ} -closed map.

The converse is not true in general as seen from the following example.

Example 4.19:

(i) Let
$$X = Y = \{a, b, c, d\}, \tau = \{\phi, X, \{a\}, \{a, b, c\}\}$$
 and

 $\sigma = \{\phi, Y, \{a\}, \{b\}, \{a, b\}\}.$ Define a map $f: (X, \tau) \rightarrow (Y, \sigma)$ by

f(a) = a, f(b) = b, f(c) = d, f(d) = c. Then f is Λ^{λ} -closed but not Λ^{λ^*} -closed, because for the Λ^{λ} -closed set {d} in $(X, \tau) f(\{d\}) = c$ which is not a Λ^{λ} -closed set in (Y, σ) .

Proposition 4.20: For any bijection $f: (X, \tau) \rightarrow (Y, \sigma)$ the following are equivalent:

(i)
$$f^{-1}: (Y, \sigma) \to (X, \tau)$$
 is Λ^{λ} -irresolute

- (ii) f is a Λ^{λ} c-open map and
- (iii) f is a Λ^{λ} c-closed map.

Proof: Similar to proposition 4.13.

Definition 4.21:

Let A be a subset of X. A mapping $r: X \to A$ is called a Λ^{λ} - continuous retraction if r is a Λ^{λ} - continuous and the restriction if r is a Λ^{λ} - continuous and the restriction r_{A} is the identity mapping on A.

Definition 4.22: A topological space (X, τ) is called a Λ^{λ} – Hausdorff if for each pair x, y of distinct points of X there exists Λ^{λ} -neighborhoods U_1 and U_2 of x and y, respectively, that are disjoint.

Theorem 4.24:

Let A be a subset of X and $r: X \to A$ be a Λ^{λ} -continuous retraction. If X is Λ^{λ} -Hausdorff, then A is a Λ^{λ} -closed set of X.

Proof:

Suppose that A is not Λ^{λ} -closed. Then there exists a point x in X such that $x \in c\ell^{\Lambda^{\lambda}}(A)$ but $x \notin A$. It follows that $r(x) \neq x$ because r is Λ^{λ} -continuous retraction. Since X is Λ^{λ} -Hausdroff, there exists disjoint Λ^{λ} -open sets U and V in X such that $x \in U$ and $r(x) \in V$. Now let W be an arbitrary Λ^{λ} -neighborhood of x. Then $W \cap U$ is a Λ^{λ} -neighborhood of x. Since $x \in C\ell^{\Lambda^{\lambda}}(A)$, we have $(W \cap U) \cap A \neq \phi$. Therefore there exists a point y in $W \cap U \cap A$. Since $y \in A$, We have $r(y) = y \in U$ and hence $r(y) \notin V$. This implies that $r(W) \notin V$ because $y \in W$. This is contrary to the Λ^{λ} -continuity of r. Consequently, A is a Λ^{λ} -closed set of X.

Theorem 4.25

Let $\{Xi : i \in I\}$ be any family of topological space. If $f : X \to \pi x i$ is a Λ^{λ} -continuous mapping, then P_{r_i} of $: X \to Xi$ is Λ^{λ} -continuous for each $i \in I$, where P_{r_i} is the projection of πx_j on to X_i . **Proof:** We shall consider a fixed $i \in I$. Suppose U_i is an arbitrary open set in X. Then $P_{\pi}^{-1}(U_i)$ is open in πXi . Since f is Λ^{λ} -continuous, we have $f^{-1}(p_{r_i}^{-1}(U_i)) = (p_{r_i} \circ f)^{-1}(U_i) \quad \Lambda^{\lambda}$ -open in X. Therefore $P_{r_i} \circ f$ is Λ^{λ} -continuous.

Proposition 4.26:

A mapping $f:(X,\tau) \to (Y,\sigma)$ is Λ^{λ} -closed if and only if $Cl^{\Lambda^{\lambda}}(f(A)) \subset f(Cl(A))$ for every subset A of (X,τ) .

Proof: Suppose that f is Λ^{λ} -closed and $A \subset X$. Then f(Cl(A)) is Λ^{λ} -closed in (Y, σ) . We have $f(A) \subset f(Cl(A))$ and by proposition 3.6, $Cl^{\Lambda^{\lambda}}(f(A)) \subset Cl^{\Lambda^{\lambda}}(f(Cl(A))) = f(Cl(A))$. Conversely, let A be any closed set in (X, τ) . By hypothesis and proposition 3.6, we have A=Cl(A) and so $f(A) = f(Cl(A)) \supset Cl^{\Lambda^{\lambda}}(f(A))$. i.e., f(A) is Λ^{λ} -closed and hence f is Λ^{λ} -closed.

Theorem 4.27:

A mapping $f: (X, \tau) \to (Y, \sigma)$ is λ -closed if and only if f is both Λ -g-closed and Λ^{λ} -closed.

Proof: Let V be a closed set in (X,τ) . As f is λ -closed, f(V) is a λ -closed in (Y,σ) . By Proposition 3.10, f(V) is a Λ -g-closed and Λ^{λ} -closed set. Hence f is Λ -g-closed and Λ^{λ} closed.

Conversely, let V be closed in (X, τ) . As f is Λ -g-closed and Λ^{λ} -closed f(V) is both Λ -g-closed and Λ^{λ} -closed set. Hence f(V) is λ -closed by Proposition 3.10.

5. Λ^{λ} -Homeomorphisms.

In this section we introduce and study two new homeomorphisms namely Λ^{λ} -homeomorphism and

 Λ^{λ^*} homeomorphism.

Definition 5.1:

A bijection $f:(X,\tau) \rightarrow (y,\sigma)$ is called λ -homeomorphism if f is both

 λ -continuous and λ -open.

Proposition 5.2: Every homeomorphism is a λ -homeomorphism.

Proof: Follows from definitions.

The converse of the Proposition 5.2 need not be true as see from the following example.

Example 5.3:

Let $X = Y = \{a, b, c, d\}, \tau = \{\phi, X, \{a\}, \{a, b, c\}\}$ and $\sigma = \{\phi, Y, \{a\}, \{b\}, \{a, b\}\}$. Define a map $f : (X, \tau) \to (y, \sigma)$ by f(a) = a, f(b) = c, f(c) = d and f(d) = b. Then f is

 λ - homeomorphism but not a homeomorphism, because it is not continuous.

Thus, the class of λ -homeomorphisms properly contains the class of homeomorphism.

Definition 5.4: A bijection $f:(X,\tau) \to (Y,\sigma)$ is called Λ^{λ} -homeomorphism if f is both Λ^{λ} continuous and Λ^{λ} -open.

Proposition 5.5: Every λ –homeomorphism is a Λ^{λ} –homeomorphism

proof: Follows from definitions.

The converse of the Proposition 5.5 need not be true as seen from the following example.

Example5.6:

Let $X = Y = \{a, b, c, d\}, \tau = \{\phi, X, \{a, b\}, \{a, b, c\}\}$ and $\sigma = \{\phi, Y, \{a\}, \{a, b\}, \{a, c, d\}\}$. Define a map $f : (X, \tau) \to (Y, \sigma)$ by f(a) = c, f(b) = d, f(c) = a and f(d) = b. Then f is Λ^{λ} - homeomorphism but not a homeomorphism. Because it is not a λ -continuous function.

Thus, the class of Λ^{λ} -homeomorphisms properly contains the class of λ -homeomorphisms.

Definition 5.7:

A bijection $f: (X, \tau) \to (Y, \sigma)$ is called $\Lambda^{\lambda} - \lambda$ - homeomorphism if f is both $\Lambda^{\lambda} - \lambda$ - continuous

and $\Lambda^{\lambda} - \lambda -$ open.

Proposition 5.8:

Every $\Lambda^{\lambda} - \lambda$ – homeomorphism is a Λ^{λ} – homeomorphism but not conversely.

Proof: Follows from definitions.

The converse of the Proposition 5.8 need not be true as seen from the following example.

Example 5.9:

The function f in 5.3 is Λ^{λ} – homeomorphism but not $\Lambda^{\lambda} - \lambda$ – homeomorphism. Because f is not

 $\Lambda^{\lambda}-\lambda-{\rm continuous.}$

Thus, the class of Λ^{λ} – homeomorphisms property contains the class of $\Lambda^{\lambda} - \lambda$ – homeomorphisms.

Proposition 5.10: Let $f:(X,\tau) \to (Y,\sigma)$ be a bijection Λ^{λ} - continuous map. Then the following statements are equivalent:

(i) f is a Λ^{λ} -open map

(ii) f is a Λ^{λ} -homeomorphism

(iii) f is a Λ^{λ} -closed map.

Proof: (i) \Leftrightarrow (ii) Follows from the definition.

(i) \Leftrightarrow (iii) Follows from proposition 3.13.

Proposition 5.11: Let $f:(X,\tau) \to (Y,\sigma)$ be a bijection $\Lambda^{\lambda} - \lambda$ - continuous map. Then the following statements are equivalent.

(i) f is a $\Lambda^{\lambda} - \lambda$ --open map

(ii) f is a $\Lambda^{\lambda} - \lambda$ – -homeomorphism

(iii) f is a $\Lambda^{\lambda} - \lambda$ --closed map.

Proof: (i) \Leftrightarrow (ii) Follows from the definition.

(i) \Leftrightarrow (iii) Follows from proposition 3.15.

The composition of two Λ^{λ} – homeomorphism maps need not be a Λ^{λ} – homeomorphism as can be seen from the following example.

Example 5.12:

Let

$$\begin{aligned} X &= Y = Z = \{a, b, c, d, e\}, \tau = \{\phi, X, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}, \\ \sigma &= \{\phi, Y, \{c, d\}, \{b, c, d\}, \{a, c, d\}\} \end{aligned}$$

and $\eta = \{\phi, Z, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$, Define a map $f : (X, \tau) \to (Y, \sigma)$ by

$$f(a) = e, f(b) = b, f(c) = a, f(d) = c, f(e) = d \text{ and } g: (Y, \sigma) \to (Z, \eta)$$
 by

g(a) = a, g(b) = b, g(c) = e, g(d) = d, g(e) = c. Then f and g are Λ^{λ} -homeomorphisms but their composition $gof: (X, \tau) \rightarrow (Z, \eta)$ is not a Λ^{λ} -homeomorphism, because $(gof)^{-1}(\{a,b\}) = \{b,c\}$ which is not a Λ^{λ} -open set in (z,η) . Therefore gof is not a Λ^{λ} continuous map and so gof is not a Λ^{λ} -homeomorphism.

We next introduce a new class of maps called $\Lambda^{\lambda*}$ -homeomorphisms which forms a sub class of Λ^{λ} -homeomorphisms. This class of maps is closed under composition of maps.

Definition 5.13:

A bijection $f: (X, \tau) \rightarrow (Y, \sigma)$ is said to be λ^* -homeomorphism if both

f and f^{-1} are λ -irresolute.

We denote the family of all λ -homeomorphisms (resp. λ^* -homeomorphism and homeomorphism) of a topological space (X, τ) on to itself by $\lambda - h(X, \tau)$. (resp. $\lambda^* - h(X, \tau)$ and $h(X, \tau)$.

Proposition 5.14:

Every λ^* -homeomorphism is a λ -homeomorphism but not conversely (i.e) for any space (X, τ) , $\lambda^* - h(X, \tau) \subset \lambda - h(X, \tau)$.

Proof:

It follows from the fact that every λ -irresolute map is a λ -continuous map and the fact that λ^* -open map is λ -open map.

The function f in example 5.3 is a λ -homeomorphism but not a

 λ^* -homeomorphism, since for the λ -closed set $\{a,b\}$ in (Y,σ) , $f^{-1}(\{a,b\}) = \{a,d\}$ which is not λ -closed in (X,τ) . Therefore f is not λ -irresolute and so f is not a λ^* -homeomorphism.

Definition 5.15:

A bijection $f:(X,\tau) \to (Y,\sigma)$ is said to be Λ^{λ^*} -homeomorphism if both f and f^{-1} are Λ^{λ} irresolute.

We denote the family of all Λ^{λ} -homeomorphisms (resp. Λ^{λ^*} -homeomorphism) of a topological space (X, τ) on to itself by $\lambda^* - h(X, \tau)$. (resp. $\Lambda^{\lambda^*} - h(X, \tau)$.

Proposition 5.16:

Every Λ^{λ^*} -homeomorphism is a Λ^{λ} -homeomorphism but not conversely (i.e) for any space (X, τ) , $\Lambda^{\lambda^*} - h(X, \tau) \subset \Lambda^{\lambda} - h(X, \tau)$.

Proof:

Follows from theorem 3.5 and the fact that every Λ^{λ^*} -open map is Λ^{λ} -open. The function f in Example 5.4 is a Λ^{λ} -homeomorphism but not a Λ^{λ^*} -homeomorphism, since for the Λ^{λ} -closed set $\{a, b. e\}$ in (y, σ) , $f^{-1}(\{a, b, e\}) = \{a, b, c\}$ which is not Λ^{λ} -closed set in (X, τ) . Therefore f is not Λ^{λ^*} -irresolute and so f is not a Λ^{λ^*} -homeomorphism.

Theorem 5.17:

If $f:(X,\tau) \to (Y,\sigma)$ and $g:(Y,\sigma) \to (Z,\eta)$ are Λ^{λ^*} -homeomorphism, then their composition $gof:(X,\tau) \to (Z,\eta)$ is also Λ^{λ^*} -homeomorphisms.

Proof:

Let B be a Λ^{λ} -open set in (Z,η) . Now, $(gof)^{-1}(B) = f^{-1}(g^{-1}(B) = f^{-1}(C)$, where $C = g^{-1}(B)$. By hypothesis, C is Λ^{λ} -open in (Y,σ) and so again by hypothesis, $f^{-1}(C)$ is Λ^{λ} -open in (X,τ) . Therefore gof is Λ^{λ} -irresolute. Also for a Λ^{λ} -open set G in (X,τ) . We have (gof)(G) = g(f(G)) = g(V), where V = f(G). By hypothesis f(G) is Λ^{λ} -open in (Y,σ) and so again by hypothesis, g(f(G)) is Λ^{λ} -open in (Z,η) -i.e., (gof)(G) is Λ^{λ} -open in (Z,η) and therefore $(gof)^{-1}$ is Λ^{λ} -irresolute. Hence gof is a $\Lambda^{\lambda*}$ -homeomorphism.

Theorem 5.18:

The set $\Lambda^{\lambda^*} - h(X, \tau)$ is a group under the composition of maps.

Proof:

Define a binary operation *: $\Lambda^{\lambda^*} - h(X,\tau) X \Lambda^{\lambda^*} - h(X,\tau) \to \Lambda^{\lambda^*} - h(X,\tau)$ by f * g = gof for all $f, g \in \Lambda^{\lambda^*} - h(X,\tau)$ and o is the usual operation of composition of maps. Then by theorem 5.17, $gof \in \Lambda^{\lambda^*} - h(X,\tau)$. We know that the composition of maps is associative and the identity map $I: (X,\tau) \to (X,\tau)$ belonging to $\Lambda^{\lambda^*} - h(X,\tau)$ serves as the identity element. If $f \in \Lambda^{\lambda^*} - h(X, \tau)$, then $f^{-1}\Lambda^{\lambda^*} - h(X, \tau)$ such that $fof^{-1} = f^{-1}of = I$ and so inverse $(\Lambda^{\lambda^*} - h(X, \tau), o)$ is a group under the operation of composition of maps.

Theorem 5.19:

Let $f:(X,\tau) \to (Y,\sigma)$ be a Λ^{λ^*} -homeomorphism. Then f induces an isomorphism from the group $\Lambda^{\lambda^*} - h(X,\tau)$ on to the group $\Lambda^{\lambda^*} - h(Y,\sigma)$.

Proof:

Using the map g, we define a map $\wp_{_g}: \Lambda^{_{\lambda^*}} - h(X, \tau) \to \Lambda^{_{\lambda^*}} - h(Y, \sigma)$ by

 $\wp_{g}(h) = gohog^{-1} \text{ for every } h \in \Lambda^{\lambda^{*}} - h(X,\tau). \text{ Then } \wp_{g} \text{ is a bijection. Further, for all } h_{1}, h_{2} \in \Lambda^{\lambda^{*}} - h(X,\tau), \ \wp_{g}(h_{1}oh_{2}) = go(h_{1}oh_{2})og^{-1} = (goh_{1}og^{-1})o(goh_{2}og^{-1}) = \wp_{g}(h_{1})o\wp_{g}(h_{2}).$

Therefore, \wp_g is a homeomorphism and so it is an isomorphism induced by g.

Theorem 5.20:

 Λ^{λ^*} -homeomorphisms is an equivalence relation in the collection of all topological spaces.

Proof: Reflexivity and symmetry are immediate and transitivity follows from Theorem 5.17.

References

[1] Francisco G.Arenas, J.Dontchev and M.Ganster (1997) On λ -sets and the dual of generalized continuity, Q and A in General topology 15: 3-13.

[2] M.Caldas, S.Jafari and T.Noiri (2008) On Λ -generalized closed sets in topological spaces, Acta Math.Hungar.118 (4): 337-343.

[3] M.Caldas, S.Jafari and G.Navalagi (2007) More on λ -closed set in toplological space, Revista Colombina de Mathematicas 41 (2): 355-369.

[4] H.Maki (1986) Generalized Λ -sets and the associated closure operator, in Speacial Issue in Commemoration of Prof.Kazusada Ikeda's Retirement pp.139-146.

[5] Maki H, P Sundaram and K Balachandran (1991) On generalized homeomorphisms in topological spaces, Bull. Fukuoka Univ. Ed. Part III 40: 13-21.

[6] Levine.N, Generalized closed sets in topology, Rend. Circ. Math. Palermo 19 (2): 89-96.

[7] Sundaram P (1991) Studies on generalizations of continuous maps in topological spaces, Ph.D. Thesis, Bharathiar University, Coimbatore.