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Abstract 

 

A graph G (V, E) is said to be a sum graph if there exists a bijective labeling from the 

vertex set V to a set S of  positive integers such that  (x  y) ∈ E  if and only if f(x) + f(y) 

∈ S. In this paper, for a given graph G (V, E), the edge function, the edge product function 

and the edge product graph are introduced and studied. The edge product number of a 

graph is defined and the edge product numbers of paths is found.  
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1. Introduction 

 

Harary F introduced the notation of sum graph [6,7]. He defined sum number of a graph as a 

minimum number of isolated vertices that must be added to G so that the resulting graph is a 

sum graph. He also conjectured that every tree T with ζ(T) = 0 is a caterpillar in [6]. Chen Z 

conjectured that all trees are ∫ ∑ - graphs [2,3]. For more on sum graphs and exclusive sum 

number can be found in [1,5]. Ellingnham proved that the sum number of a tree is one [4]. The 

sum number of a complete graph Kn with n  4 vertices gives as S(K) = (2n - 3) in [9]. The sum 

number of paths is found in [6]. For a detailed account on variations of sum graphs one can 

refer to Gallian [8]. We want to introduce the edge as well as the product analogue of sum 

graph. This paper gives an idea about edge product graphs and the edge analogue of 

product graphs. We also characterize the edge product number of connected graphs. A graph 

is said to be an edge product graph if the edges of G can be labeled with distinct positive 

integers such that the product of all the labels of the edges incident on a vertex is again an 

edge label of G and if the product of any collection of edges is a label of an edge in G, then 

they are incident on a vertex. In this paper, for a given graph G, the edge product number of  

graphs is defined and investigate the edge product numbers of paths.  

 

2. Edge Product Graph 

 

Definition 2.1: Let G be a given graph. A bijection f: E  P where P is a set of positive 

integers is called an edge function of G. Define F(v) = {f(e): e is incident on v} on V. Then 

the function F is called the edge product function of the edge function f. The graph G is said to 

be an edge product graph if there exists an edge function f: E  P such that the function f 

and its corresponding edge product function F on V satisfies that F(v) ∈ P  for every v ∈ V 

and if e1, e2, …,ep ∈ E such that f(e1) f(e2) … f(ep) ∈ P, then the edges e1, e2, …,ep are 

incident on a vertex. 

Example 2.2: Let V = {v1, v2, v3, v4, v5, v6, v7, v8} be the vertex set and E = {v1v2, v2v3, v3v4, 

v2v5, v3v6, v7v8} be the edge set of G. The edge function f: E  P is defined by f(v1v2) = 26,  

f(v2v3) = 23, f(v3v4) = 24, f(v2v5) = 25, f(v3v6) = 27 and  f(v7v8) = 214. The corresponding edge 

product function F is given by F is given by F(v1) = 26, F(v2) = 214, F(v3) = 214, F(v4) = 24, F(v5) 

= 25, F(v6) = 27, F(v7) = 214 and F(v8) = 214. Clearly G is an edge product graph. 
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Note 2.3: If G is an edge product graph then K2 is a component of G. 

 

3. Edge Product Number of a Graph 

 

Edge product number of a graph is a minimum number r of K2 components that must be 

added to G so that the resulting graph is the edge product graph. Thus the graph G∪rK2 is 

an edge product graph for minimum r then the number r is called the edge product number 

of G and is denoted by EPN(G). For any connected graph G other than K2, EPN(G)  1. Let 

EPN(G) = r. An edge function f: E  P and its corresponding edge product function F which 

make G∪rK2 an edge product graph are respectively called an optimal edge function and 

an optimal edge product function of G. Let E = E1∪E2 where E1 is the edge set of G and E2 

that of rK2. Then, EPN(G) = Cardinality of the set {F(v): v ∈ V, F(v) ∉ f(E1)}. If F(V)∩f(E1) =  

then F is said to be outer edge product function and if F(V)∩f(E1)  , then F is said to be an 

inner edge product function. The range of F has atleast r elements.  It has exactly r elements 

if and only if F is outer edge product function. 

 

4. Edge Product Number of Paths 

 

A walk is called a trail if all the edges appearing in the walk are distinct. It is called a path if 

all the vertices are distinct. We present here the edge product number of paths. Let Pq be a 

path on q vertices with V = {v1, v2, … , vq, v(q + 1)} and E = {viv(i + 1): 1  i  q} be the vertex set 

and edge set respectively. The following figure shows that EPN(P2) = EPN(P3) = EPN(P4) = 

EPN(P6) =  1.  
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                                                           Figure 2 

Theorem 4.1:  EPN(Pq) = 2 for some q = 5.   

Proof:  Assume that EPN(Pq) = 1 for some q = 5 then (P5∪K2) is an edge product graph. Let V 

= {v1, v2, v3, v4, v5, v6, w1, w2} and E = {viv(i + 1): 1  i  5}∪{w1w2} be the vertex set and 

edge set of G respectively. The elements of the set P = {a1, a2, a3, a4, a5, b}. The mapping  

f: E  P is an optimal edge function and F is the optimal edge product function of f.  

Let the optimal edge function f is defined by f(viv(i + 1)) = ai for 1  i  5 and f(w1w2) = b. 

Then the optimal edge product function F is defined by  

F(v1) = f(v1v2) = a1 

F(vi) = f(v(i – 1)vi)  f(viv(i + 1)) = a(i - 1)  ai for 2  i  5  

F(v6) = f(v5v6) = a5  and  F(w1) = F(w2) = b.  

Since, a(i - 1) ai  ai a(i + 1) for 2  i  5 and F(v2)  F(v3), F(v3)  F(v4), F(v4)  F(v5). The 

vertices v1 and v6 are pendent vertices. Then F(v3) can be f(v1v2) and F(v4) can be f(v5v6). Since 

the function F is into P, we get   F(v2) = F(v5) = F(w1) = F(w2) = b, F(v3) = f(v1v2) = a1  and  

F(v4) = f(v5v6) = a5. Therefore (a1  a2) = (a4  a5), (a2  a3) = a1

 

and (a3  a4

 

) = a5. That is 

(a2

 

a3 )  a2  = a4  (a3

 

 a4)  a2 = a4. This is a contradiction to our assumption that the 

elements of P are distinct. Thus EPN(Pq)  2 for some q = 5. The graph (P5∪K2) is an edge 

product graph and EPN(P5) = 2 shown below.   
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Theorem 4.2: EPN(Pq) = 2 for some q  7. 

Proof: Consider Pq is a path on some q  7 and EPN(Pq) = 1. The graph (Pq∪K2) is an edge 

product graph with V = {v1, v2, … ,vq, v(q + 1), w1, w2} and E = {viv(i + 1): 1  i  q }∪{w1w2}. Let 

f: E  P be an optimal edge function and F be its corresponding optimal edge product 

function of G. The edge product graph G has no triangles. But G has four pendent vertices 

namely v1, v(q + 1), w1, w2 and the three pendent edges namely  v1v2, vqv(q + 1) and w1w2.  Then 

we have F(V)  {f(v1v2), f(vqvq + 1), f(w1w2)} and also F(v1) = f(v1v2), F(v3) can be f(v1v2). 

Similarly F(v(q + 1)) = f(vqv(q + 1)), F(v(q – 1)) can be f(vqv(q + 1)). Therefore F(v) = f(w1w2)  for all 

other vertices of v. But F(v3) = F(v4) = f(w1w2) for some q  7.  

Hence F(v3) = f(v2v3) f(v3v4)  f(v3v4) f(v4v5) = F(v4) which is a contradiction. Thus we obtain 

the result that EPN(Pq)  2 for some q  7. Suppose (Pq∪2K2) for some q  7 with  

V = {v1, v2, … ,vq, v(q + 1), w1, w2, w3, w4} and E = {viv(i + 1): 1  i  q}∪{w1w2, w3w4} then 

there may arise two cases. 

Case (1) when q is odd 

Take q = (2p + 1) for some p  3. Consider A = p2 + 1 + [p(p + 1) / 2] and  

P = {2p + j: 1   j  p}∪{2A + k: 0  k  p}∪{(2A + 2p), (2A + 2p +1)}.  

Define the edge function f: E  P by  

f(v2iv(2i + 1)) = 2p + i  for 1  i  p  

f(v(2i + 1)v(2i + 2)) = 2A + p - i for 1  i  p 

f(w1w2) = 2A + 2p and f(w3w4) = 2A + 2p + 1  

The corresponding edge product function F is defined by 

F(v1) = f(v1v2) = 2A + p  

F(v2i) = f(v(2i - 1)v2i)  f(v2iv(2i + 1))  for 1  i  p 

          = 2A + p - i + 1  2p + i = 2A + 2p + 1 = f(w3w4)      

F(v2i+1) = f(v2iv(2i + 1))  f(v(2i + 1)v(2i + 2)) for 1  i  p 

         = 2p + i  2A + p - i = 2A + 2p = f(w1w2) 

F(v2p + 2) = f(v(2p + 1)v(2p + 2))  = 2A 

F(w1)  = F(w2) = f(w1w2) = 2A + 2p and F(w3)  = F(w4) = f(w3w4) = 2A + 2p + 1 

Therefore the four elements of F are the elements of P, namely 2A, 2A + p, 2A + 2p and 2A + 2p + 1. 

Hence the function F is into P. Also 2p + 1, 2p + 2, … , 22p, 2A, 2A + 1, … ,   2A + p, 2A + 2p and  

2A + 2 p + 1 are the elements of  P in ascending order. Then the elements of P have the following 

three conditions: 
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 (i) 2p + 1 2p + 2 = 22p + 3 > 22p 

 (ii) 2p + 1  2p + 2 … 22p = 2(p
2

 + p(p + 1)) / 2 < 2A   

 (iii) 2p + 1 2A > 2A + p 

If f(e1)  f(e2) …  f(er) = P where the r edges e1, e2, … , er ∈ E and  r > 1, then P is either 

2A + 2p or 2A + 2p + 1.Now the elements of P are divided into three sets, namely P1 = {2p + 1, 2p + 

2, … ,2p + p = 22p}, P2 = {2A, 2A + 1, 2A + 2, … ,2A + p}and P3 = {2A + 2p, 2A + 2p + 1}. Therefore  

P = P1∪P2∪P3 and the elements have the following four properties:  

(i) Product of all the elements of P1 < 2A < 2A + 2p < 2A + 2p +1 

(ii) 2p + 1  2p + 2  2A > 2A + 2p + 1 

(iii) 2A  2A + 1 > 2A + 2p + 1 

(iv) 2p + 1 2A + 2p > 2A + 2p + 1 

If the product of a collection of more than one element of P is either2A + 2p or 2A + 2p + 1 then 

the collection contains exactly one element from P1 and one element from P2. Then for  

1  i  p, the elements 2(A + 2p) – (p + i) and 2(A + 2p + 1) – (p + i) are uniquely determined. Thus the 

2p collections gives the products F(vi) for 2  i  (2p + 1). If f(e1)  f(e2) …  f(er) ∈ P 

then r = 2 and the edges e1 and e2 are incident on a vertex. Therefore, for odd integers q  

7, (Pq∪2K2) is an edge product graph. Thus EPN(Pq)  2 for some q  7. This proves that 

EPN(P(2p + 1)) = 2 for some p  3. The following figure shows that the graph (P9∪2K2) is an 

edge product graph and EPN(P9) = 2.  

 

 

 

Case (2) when q is even 

If q = 2p for some p  4. Consider B = {p2 + [p (p - 1) / 2]} and  

P = {2p – 1 + j: 1  j  p}∪{2B + j: 1  j  p}∪{2B + 2p - 1, 2B + 2p}.  
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The corresponding edge product function F of f is defined by 

F(v1) = f(v1v2) = 2B + p 

F(v2i) = f(v(2i - 1)v2i)  f(v2iv(2i + 1))  for  1   i  p 

          = 2B + p + 1- i 2p - 1 + i = 2B + 2p = f(w3w4) 

F(v(2i + 1)) = f(v2iv(2i + 1))  f(v(2i + 1)v(2i + 2)) for 1  i  (p – 1) 

                = 2p - 1 + i 2B + p - i = 2B + 2p - 1 = f(w1w2) 

F(v(2p + 1)) = 22p – 1; F(w1) = F(w2) = f(w1w2) = 2B + 2p - 1 and F(w3) = F(w4) = f(w3w4) = 2B + 2p. 

Therefore, F has only four elements which are the elements of P, namely 2B+p, 22p - 1, 2B + 2p - 1 

and 2B + 2p. Hence F is into P. For q = 2p, (Pq∪2K2) is an edge product graph for every p  4. 

Thus EPN(P2p) = 2 for some p  4. The following figure shows that (P8∪2K2) is an edge 

product graph and EPN(P8) = 2. 
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