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Abstract 

 

Traditionally, the values of Riemann zeta function at the even positive integers have been 

formulated in terms of Bernoulli numbers nB2 and the sums of the alternating series of odd 

powers of the reciprocal of odd positive integers have been calculated in terms of Euler 

numbers .2nE  However, the present author reproduced the sum of the same series using 

different procedures in terms of two rational numbers na and .nb In this paper, the relationships 

between nB2 & na and nE2 & nb have been established. Consequently, some of the theorems and 

corollaries in [5] have been restated in terms of nB2 and .2nE   
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1. Introduction 

 

When the present author worked on the paper [5] in 2010, he was not aware of the 

works that have produced similar results in terms Bernoulli and Euler numbers earlier [3, 4]. One 

of the friends of the author first told him about existence of such works in terms of nB2 & nE2 and 

suggested him to find the possible connections between nB2 & na and nE2 & .nb When investigated 

further, author found some other people did similar works in the recent years [8, 9, 10]. However, 

the approach of [5] was different from others. In section 2, the connection between nB2 & na has 

been established and in order to do it, the formula for calculating the values of Riemann zeta 

function at the positive even integers in terms of Bernoulli’s numbers nB2 has been derived. For 

finding the connection between nE2 & ,nb the derivation of computing the sum of alternating series 

of odd powers of the reciprocals of odd positive integers in terms of the Euler’s numbers nE2  has 

been shown in section 3. Acknowledgement and the References are provided respectively in 

section 4 and 5. 

 

2. Relation Between nB2 and na  

 

Derivation of 
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 The Riemann zeta function [2] is defined by the formula 

 

                                                  ,
1

)(

2

)(
)(

x

dx

e

x

i

s
s

x

s

            (1a)  

where )1()(
0

sdxxes sx
 and for real values of s greater than one, )(s is equal to the 

Dirichlet's function  

                                                     .
1

)(
1n

sn
s        (1b)    



110 Published By Atlas Publishing, LP (www.atlas-publishing.org) 

 

However, formula (1a) for )(s is valid for all .s In fact, since the integral in (1a) clearly 

converges for all values of ,s real or complex, and since the function it defines is complex analytic, 

the function )(s of (1a) is defined and analytic at all points with the possible exception of the 

points ,,3,2,1 s where )( s has poles. For ,,4,3,2 s formula (1b) shows that )(s has no 

poles, and hence the integral in (1a) must have a zero which cancels the poles of )( s at these 

points, a fact which also follows immediately from Cauchy's theorem. At 1s formulas (1b) shows 

that )(s as ,1s hence )(s has a simple (since the pole of )( s is simple) pole .1s Thus 

formula (1a) defines a function )(s which is analytic at all points of the complex s plane except 

for a simple pole at .1s This function coincides with (1b) for real values of 1s and in fact, by 

analytic continuation, throughout the half plane Re .1s  
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(replacing x by )( x in (2)). Subtracting (3) from (2) gives 
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Equating the coefficients of the like terms one obtains, 
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Consequently, ,
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Again, one can write [6], 
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The coefficients of even powers of x in the Taylor series of
x

x
1

cot vanish, since 
x

x
1

cot is an 

odd function. The coefficients of 
12nx in (8) can be written as 
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Comparing (6) and (9) one can write, 
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which had been found by Euler [3]. 

 

In [5], Corollary 1.2, the following relationship has been established    
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where 0a is a rational number (not fixed) that depends on .n Equating (10) and (11) and solving for 

),(0 na one can show, 
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This establishes the relationship between nB2 and ).(0 na  

Proof of Corollary 1.2: 

 

The Riemann zeta can be written as 
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Replacing n by n2 in the above relation and using the first part of the Corollary1.1 which is given 

by 
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one can prove the Corollary 1.2. 

 

Remark: Although, in establishing the Theorem 1.1 in [5], especially, the first equation of (10) in 

[5], the numbers ,0,nan have been utilized, for a given value of ,n all the numbers 

11 ,,, aaa nn  are already known and only 0a needs to be computed. Moreover, only 0a plays a 

significant role in computing the values of the Riemann zeta function at the even positive integers. 
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Using the relation in (12) one can restate the first part of the Corollary 1.1 and Corollary 1.2 in 

[5] respectively as: 
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Corollary 1.2. For ,1n .
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3. Relation Between nE2 and nb  

 

Derivation of 
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It can be shown [6] that xsec has the partial fraction decomposition 
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The coefficients nx2 can be written as series  ).,2,1,0(
12

)1(2
2

2

1

)1(2
12

112

12

1

n
k

k

n

kn

n

k

 

It follows that  
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In (15) the index )1(k has been replaced by .k Comparing (13) and (15) one can, after some 

simplification, write 
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Euler predicted such a formula and he calculated the sum of the series for 1n in 1774 [1, 4, 7]. 

 

The second part of the Corollary 1.1 in [5] has the relation 
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Equating (16) and (17) one can write, 
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This establishes the relationship between nB2 and .nb  

Proof of Corollary 1.1: 
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One can easily prove the part of the Corollary 1.1 by simply substituting 
2

in the first and 

the second part of the Theorem 1.1 below and using the relation  
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Here for ,1,0n the equality of two sides of (18) has been shown. 
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Using the relation in (18), the second part of the Corollary 1.1 in [5] can be restated as: 
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Finally, the Theorem 1.1. in [5] is restated here: 

 

Theorem 1.1. For ,0k  
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where the rational numbers na and nb are expressed in term of nB2 and nE2 respectively in (12) 

and (18). 

Proof of Theorem 1.1: 



116 Published By Atlas Publishing, LP (www.atlas-publishing.org) 

 

Here Mathematical Induction is being used for the proof of this theorem. For 1k and ,0 the 

first statement of Theorem 1.1 is true since 

                      ,
)12(

)12cos( 2

01

0
2

aa
n

n

n

  
8

1
0a  

                 
2

22

2

8

1

5

1

3

1
1  which is a well known result. 

It is assumed that it is true for ,rk where r is a positive integer. Then 
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The proof would be over in one can show that above statement is true for ,1rk  that is, 
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Integration of (20) with respect to provides  
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Substitution of 0shows that ,0c which turns (22) into  
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  Integration of (23) with respect to  produces the equation   
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Combining the first term of the right side of (25) with the summation term and writing 
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This establishes the first part of Theorem 1.1. Following the same technique as in the proof of the 

above, one can prove the second part of it. 
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