Journal of Mathematical Sciences & Computer Applications 2 (1): 108–117, 2014 doi: 10.5147/jmsca.2014.0180

The Relationships Between the Bernoulli Numbers $B_{2n} \& a_n$ And the Euler Numbers $E_{2n} \& b_n$

Mohammed R. Karim

Department of Mathematics, Alabama A&M University, Normal, AL, USA E-mail: <u>mohammed.karim@aamu.edu</u>, Tel. (256) 372-4835, Fax: (256)372-5931

Received: October 17, 2013/ Accepted: February 10, 2014

Abstract

Traditionally, the values of Riemann zeta function at the even positive integers have been formulated in terms of Bernoulli numbers B_{2n} and the sums of the alternating series of odd powers of the reciprocal of odd positive integers have been calculated in terms of Euler numbers E_{2n} . However, the present author reproduced the sum of the same series using different procedures in terms of two rational numbers a_n and b_n . In this paper, the relationships between $B_{2n} \& a_n$ and $E_{2n} \& b_n$ have been established. Consequently, some of the theorems and corollaries in [5] have been restated in terms of B_{2n} and E_{2n} .

Key Words: Riemann zeta function, Bernoulli numbers, Euler numbers, Sum of Series.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

When the present author worked on the paper [5] in 2010, he was not aware of the works that have produced similar results in terms Bernoulli and Euler numbers earlier [3, 4]. One of the friends of the author first told him about existence of such works in terms of $B_{2n} \& E_{2n}$ and suggested him to find the possible connections between $B_{2n} \& a_n$ and $E_{2n} \& b_n$. When investigated further, author found some other people did similar works in the recent years [8, 9, 10]. However, the approach of [5] was different from others. In section 2, the connection between $B_{2n} \& a_n$ has been established and in order to do it, the formula for calculating the values of Riemann zeta function at the positive even integers in terms of Bernoulli's numbers B_{2n} has been derived. For finding the connection between $E_{2n} \& b_n$, the derivation of computing the sum of alternating series of odd powers of the reciprocals of odd positive integers in terms of the Euler's numbers E_{2n} has been shown in section 3. Acknowledgement and the References are provided respectively in section 4 and 5.

2. Relation Between B_{2n} and a_n

Derivation of

$$\zeta(2n) = (-1)^{n+1} \frac{(2\pi)^{2n}}{2 \cdot (2n)!} B_{2n}, \ n \ge 1, \text{ where } B_n \text{ are the Bernoulli's numbers.}$$

The Riemann zeta function ζ [2] is defined by the formula

$$\zeta(s) = \frac{\Pi(-s)}{2\pi i} \int_{-\infty}^{\infty} \frac{(-x)^s}{e^x - 1} \cdot \frac{dx}{x},$$
(1a)

where $\Pi(s) = \int_{0}^{\infty} e^{-x} x^{s} dx$ (s > -1) and for real values of s greater than one, $\zeta(s)$ is equal to the

Dirichlet's function

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}.$$
 (1b)

However, formula (1a) for $\zeta(s)$ is valid for all *s*. In fact, since the integral in (1a) clearly converges for all values of *s*, real or complex, and since the function it defines is complex analytic, the function $\zeta(s)$ of (1a) is defined and analytic at all points with the possible exception of the points $s = 1, 2, 3, \cdots$, where $\Pi(-s)$ has poles. For $s = 2, 3, 4, \cdots$, formula (1b) shows that $\zeta(s)$ has no poles, and hence the integral in (1a) must have a zero which cancels the poles of $\Pi(-s)$ at these points, a fact which also follows immediately from Cauchy's theorem. At s = 1 formulas (1b) shows that $\zeta(s) = \infty$ as $s \rightarrow 1$, hence $\zeta(s)$ has a simple (since the pole of $\Pi(-s)$ is simple) pole s = 1. Thus formula (1a) defines a function $\zeta(s)$ which is analytic at all points of the complex s – plane except for a simple pole at s = 1. This function coincides with (1b) for real values of s > 1 and in fact, by analytic continuation, throughout the half plane Re s > 1.

Let
$$f(x) = \frac{x}{e^x - 1} = B_0 + \frac{B_1}{1!}x + \frac{B_2}{2!}x^2 + \frac{B_3}{3!}x^3 + \dots + \frac{B_n}{n!}x^n + \dots,$$
 (2)

where $B_0 = \lim_{x \to 0} \frac{x}{e^x - 1} = \lim_{x \to 0} \frac{x}{1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots - 1} = \lim_{x \to 0} \frac{1}{1 + \frac{x}{2!} + \frac{x^2}{3!} + \dots} = 1$ and the series

converges on the disk $D :| x | < 2\pi$. Moreover, the element $\{D, f(x)\}$ has singular point at

$$x = \pm 2\pi i$$
, since $\lim_{x \to \pm 2\pi i} \frac{x}{e^x - 1} = \infty$, and hence (2) has radius of convergence 2π .

Then $f(-x) = \frac{-x}{e^{-x} - 1} = \frac{-xe^x}{(e^{-x} - 1)e^x} = \frac{xe^x}{e^x - 1}, |x| < 2\pi$

$$= B_0 - \frac{B_1}{1!} x + \frac{B_2}{2!} x^2 - \frac{B_3}{3!} x^3 + \dots + (-1)^n \frac{B_n}{n!} x^n + \dots.$$
(3)

(replacing x by (-x) in (2)). Subtracting (3) from (2) gives

$$f(x) - f(-x) = \frac{x}{e^x - 1} - \frac{xe^x}{e^x - 1} = \frac{-x(e^x - 1)}{e^x - 1} = -x$$
$$= 2\frac{B_1}{1!}x + 2\frac{B_3}{3!}x^3 + \dots + 2\frac{B_{2n+1}}{(2n+1)!}x^{2n+1} + \dots$$
(4)

Equating the coefficients of the like terms one obtains,

$$2B_1 = -1, B_3 = B_5 = \dots = B_{2n+1} = \dots = 0.$$

Consequently,
$$f(x) = \frac{x}{e^x - 1} = 1 - \frac{x}{2} + \sum_{n=1}^{\infty} \frac{B_{2n}}{(2n)!} x^{2n}, |x| < 2\pi.$$
 (5)

One can write, $\cot x = \frac{\cos x}{\sin x} = i \frac{e^{ix} + e^{-ix}}{e^{ix} - e^{-ix}} = i \frac{e^{2ix} + 1}{e^{2ix} - 1} = i + \frac{2i}{e^{2ix} - 1}$ is analytic for $|x| < \pi$ and then

$$x \cot x = ix + \frac{2ix}{e^{2ix} - 1} = ix + 1 - \frac{2ix}{2} + \sum_{n=1}^{\infty} \frac{B_{2n}}{(2n)!} (2ix)^{2n} = 1 + \sum_{n=1}^{\infty} (-1)^n \frac{2^{2n} B_{2n}}{(2n)!} x^{2n}$$
 (replacing x by 2xi

in (5)).

$$\Rightarrow \cot x - \frac{1}{x} = \sum_{n=1}^{\infty} (-1)^n \frac{2^{2n} B_{2n}}{(2n)!} x^{2n-1}$$
(6)

Again, one can write [6],

$$\cot x - \frac{1}{x} = \sum_{k=1}^{\infty} \left(\frac{1}{x - k\pi} + \frac{1}{x + k\pi} \right), \ |x| < \pi.$$
(7)

However,
$$\frac{1}{x-k\pi} + \frac{1}{x+k\pi} = -\sum_{m=0}^{\infty} \frac{x^m}{(k\pi)^{m+1}} + \sum_{m=1}^{\infty} (-1)^m \frac{x^m}{(k\pi)^{m+1}} = -2\sum_{n=1}^{\infty} \frac{x^{2n-1}}{(k\pi)^{2n}}, |x| < k\pi.$$
 (8)

The coefficients of even powers of x in the Taylor series of $\cot x - \frac{1}{x}$ vanish, since $\cot x - \frac{1}{x}$ is an

odd function. The coefficients of x^{2n-1} in (8) can be written as

$$-2\sum_{n=1}^{\infty}\frac{1}{(k\pi)^{2n}}=-\frac{2}{\pi^{2n}}\sum_{n=1}^{\infty}\frac{1}{k^{2n}}.$$

That converts (7) to

$$\cot x - \frac{1}{x} = \sum_{n=1}^{\infty} \left[-\frac{2}{\pi^{2n}} \sum_{k=1}^{\infty} \frac{1}{k^{2n}} \right] x^{2n-1}.$$
 (9)

Comparing (6) and (9) one can write,

$$\frac{2}{\pi^{2n}} \sum_{n=1}^{\infty} \frac{1}{k^{2n}} = (-1)^{n+1} \frac{2^{2n} B_{2n}}{(2n)!}$$
$$\Rightarrow \zeta(2n) = \sum_{n=1}^{\infty} \frac{1}{k^{2n}} = (-1)^{n+1} \frac{(2\pi)^{2n}}{2(2n)!} B_{2n},$$
(10)

which had been found by Euler [3].

In [5], Corollary 1.2, the following relationship has been established

$$\zeta(2n) = \frac{2^{2n}}{2^{2n} - 1} \pi^{2n} a_0(n), \quad n = 1, 2, 3, \cdots.$$
(11)

where a_0 is a rational number (not fixed) that depends on *n*. Equating (10) and (11) and solving for $a_0(n)$, one can show,

$$a_0(n) = (-1)^{n+1} \frac{2^{2n} - 1}{2(2n)!} B_{2n}.$$
(12)

This establishes the relationship between B_{2n} and $a_0(n)$.

Proof of Corollary 1.2:

The Riemann zeta can be written as

$$\zeta(n) = \frac{2^2}{2^n - 1} j = \sum_{j=0}^{\infty} \frac{1}{(2j+1)^n}.$$

Replacing n by 2n in the above relation and using the first part of the **Corollary1.1** which is given by

$$\sum_{n=0}^{\infty} \frac{1}{(2n+1)^{2k}} = a_0 \pi^{2k}$$

one can prove the Corollary 1.2.

Remark: Although, in establishing the Theorem 1.1 in [5], especially, the first equation of (10) in [5], the numbers $a_n, n \ge 0$, have been utilized, for a given value of n, all the numbers a_n, a_{n-1}, \dots, a_1 are already known and only a_0 needs to be computed. Moreover, only a_0 plays a significant role in computing the values of the Riemann zeta function at the even positive integers.

Examples:
1. For
$$n = 1$$
, $a_0(1) = \frac{3}{2 \cdot 2} \cdot \frac{1}{6} = \frac{1}{8}$, $\left(B_2 = \frac{1}{6}\right)$.
2. For $n = 2$, $a_0(2) = (-1)\frac{15}{2 \cdot 24} \cdot \left(-\frac{1}{30}\right) = \frac{1}{96}$, $\left(B_4 = -\frac{1}{30}\right)$.
3. For $n = 3$, $a_0(3) = \frac{2^6 - 1}{2 \cdot 6!} \cdot \left(\frac{1}{42}\right) = \frac{1}{960}$, $\left(B_6 = \frac{1}{42}\right)$.

Using the relation in (12) one can restate the first part of the **Corollary 1.1** and **Corollary 1.2** in [5] respectively as:

Corollary 1.1. For
$$n \ge 1$$
, $\sum_{k=0}^{\infty} \frac{1}{(2k+1)^{2n}} = a_0(n)\pi^{2n} = (-1)^{n+1} \frac{2^{2n}-1}{2(2n)!}\pi^{2n}B_{2n}$.

Corollary 1.2. For
$$n \ge 1$$
, $\zeta(2n) = \frac{2^{2n}}{2^{2n}-1}\pi^{2n}a_0(n) = (-1)^{n+1}\frac{2^{2n}-1}{2(2n)!}\pi^{2n}B_{2n}$.

3. Relation Between E_{2n} and b_n

Derivation of

$$\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^{2n+1}} = (-1)^n \frac{\pi^{2n+1}}{4^{n+1}(2n)!} E_{2n}, \ (n=0,1,2,\cdots), \text{ where } E_n \text{ are the Euler's } E_{2n}$$

numbers.

The function

$$\sec x = \frac{1}{\cos x}$$
 is analytic for $|x| < \frac{\pi}{2}$ and therefore $\sec x$ has Maclaurin series

representation

$$\sec x = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n + \dots$$

Since $\sec x$ is an even function, all the coefficients of odd powers of x vanish, and hence

$$\sec x = \frac{1}{1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots}$$
$$= c_0 + c_2 x^2 + c_4 x^4 + \dots + c_{2n} x^{2n} + \dots$$

where $c_{2n} = (-1)^n \frac{E_{2n}}{(2n)!}$ and E_n are the Euler's numbers. Then

$$\sec x = \sum_{n=0}^{\infty} (-1)^n \frac{E_{2n}}{(2n)!} x^{2n}, \ |x| < \frac{\pi}{2}.$$
 (13)

It can be shown [6] that $\sec x$ has the partial fraction decomposition

sec
$$x = \sum_{k=1}^{\infty} (-1)^k \frac{(2k-1)\pi}{x^2 - \left(k - \frac{1}{2}\right)^2 \pi^2} = \sum_{k=1}^{\infty} f_k(x)$$
, where

$$f_{k}(x) = (-1)^{k} \left[\frac{1}{x - \left(k - \frac{1}{2}\right)\pi} - \frac{1}{x + \left(k - \frac{1}{2}\right)\pi} \right]$$
$$= -(-1)^{k} \left[\sum_{m=0}^{\infty} \frac{x^{m}}{\left[\left(k - \frac{1}{2}\right)\pi \right]^{m+1}} + \frac{(-1)^{m}x^{m}}{\left[\left(k - \frac{1}{2}\right)\pi \right]^{m+1}} \right]$$
$$= 2(-1)^{k-1} \sum_{n=0}^{\infty} \frac{x^{2n}}{\left[\left(k - \frac{1}{2}\right)\pi \right]^{2n+1}}, |x| < \left(k - \frac{1}{2}\right)\pi.$$
(14)

The coefficients x^{2n} can be written as series $\frac{2(-1)^{k-1}}{\left[\left(k-\frac{1}{2}\right)\pi\right]^{2n+1}} = 2\left(\frac{2}{\pi}\right)^{2n+1} \frac{(-1)^{k-1}}{(k-1)^{2n+1}} (n=0,1,2,\cdots).$

It follows that

$$\sec x = \sum_{n=0}^{\infty} \left[2 \left(\frac{2}{\pi} \right)^{2n+1} \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^{2n+1}} \right] x^{2n} \quad \left(|x| < \frac{\pi}{2} \right).$$
(15)

In (15) the index (k-1) has been replaced by k. Comparing (13) and (15) one can, after some simplification, write

$$\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^{2n+1}} = (-1)^n \frac{\pi^{2n+1}}{4^{n+1} \cdot (2n)!} E_{2n}, \ (n=0,1,2,\cdots).$$
(16)

Euler predicted such a formula and he calculated the sum of the series for n = 1 in 1774 [1, 4, 7].

The second part of the Corollary 1.1 in [5] has the relation

$$\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^{2n+1}} = b_{2n} \pi \left(\frac{\pi}{2}\right)^{2n} + \sum_{i=1}^n b_{2n-2i+1} \pi^{2i} \left(\frac{\pi}{2}\right)^{2n-2i+1} (n=0,1,2,\cdots).$$
(17)

Equating (16) and (17) one can write,

$$b_{2n}\pi\left(\frac{\pi}{2}\right)^{2n} + \sum_{i=1}^{n}b_{2n-2i+1}\pi^{2i}\left(\frac{\pi}{2}\right)^{2n-2i+1} = (-1)^{n}\frac{\pi^{2n+1}}{4^{n+1}\cdot(2n)!}E_{2n}, \ (n=0,1,2,\cdots).$$
(18)

This establishes the relationship between B_{2n} and b_n .

Proof of Corollary 1.1:

One can easily prove the part of the Corollary 1.1 by simply substituting $\theta = \frac{\pi}{2}$ in the first and

the second part of the Theorem 1.1 below and using the relation

$$\sum_{n=0}^{\infty} \frac{\sin(2n+1)\theta}{2n+1} = \frac{\pi}{4}.$$
 (18a)

Here for n = 0, 1, the equality of two sides of (18) has been shown.

For n = 0, equation (18) is satisfied: $b_0 \pi = \frac{\pi}{4} E_0 \Longrightarrow \frac{\pi}{4} = \frac{\pi}{4} \left(b_0 = \frac{1}{4}, E_0 = 1 \right)$.

Similarly, n = 1, the two sides of (18) become equal.

$$\frac{\pi^{3}}{4}b_{2} + \frac{\pi^{3}}{2}b_{1} = (-1)\frac{\pi^{3}E_{2}}{4^{2} \cdot 2!}$$

$$\Rightarrow \frac{\pi^{3}}{4} \cdot \left(-\frac{1}{8}\right) + \frac{\pi^{3}}{2} \cdot \left(\frac{1}{8}\right) = (-1)\frac{\pi^{3}}{32}(-1) \quad \left(b_{2} = -\frac{1}{8}, \ b_{1} = \frac{1}{8}, \ E_{2} = 1\right)$$

$$\Rightarrow \frac{\pi^{3}}{32} = \frac{\pi^{3}}{32}$$

Using the relation in (18), the second part of the Corollary 1.1 in [5] can be restated as:

Corollary1.1. For
$$n \ge 1$$
, $\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^{2n+1}} = b_{2n} \pi \left(\frac{\pi}{2}\right)^{2n} + \sum_{i=1}^n b_{2n-2i+1} \pi^{2i} \left(\frac{\pi}{2}\right)^{2n-2i+1}$ $(n = 0, 1, 2, \cdots)$, where $b_{2n} \pi \left(\frac{\pi}{2}\right)^{2n} + \sum_{i=1}^n b_{2n-2i+1} \pi^{2i} \left(\frac{\pi}{2}\right)^{2n-2i+1} = (-1)^n \frac{\pi^{2n+1}}{4^{n+1} \cdot (2n)!} E_{2n}, \ (n = 0, 1, 2, \cdots).$

Finally, the **Theorem 1.1.** in [5] is restated here:

Theorem 1.1. For $k \ge 0$,

$$\sum_{n=0}^{\infty} \frac{\cos(2n+1)\theta}{(2n+1)^{2k}} = a_{2k-1}\pi\theta^{2k-1} + \sum_{i=1}^{k} a_{2k-2i}\pi^{2i}\theta^{2k-2i} \text{ and}$$

$$\sum_{n=0}^{\infty} \frac{\sin(2n+1)\theta}{(2n+1)^{2k+1}} = b_{2k}\pi\theta^{2k} + \sum_{i=1}^{k} b_{2k-2i+1}\theta^{2k-2i+1},$$
(19)

where the rational numbers a_n and b_n are expressed in term of B_{2n} and E_{2n} respectively in (12) and (18).

Proof of Theorem 1.1:

Here Mathematical Induction is being used for the proof of this theorem. For k = 1 and $\theta = 0$, the first statement of Theorem 1.1 is true since

$$\sum_{n=0}^{\infty} \frac{\cos(2n+1)\theta}{(2n+1)^2} = a_1 \pi \,\theta + a_0 \,\pi^2, \quad \left(a_0 = \frac{1}{8}\right)$$
$$\Rightarrow 1^2 + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{1}{8} \,\pi^2 \text{ which is a well known result}$$

It is assumed that it is true for k = r, where r is a positive integer. Then

$$\sum_{n=0}^{\infty} \frac{\cos(2n+1)\theta}{(2n+1)^{2r}} = a_{2r-1}\pi\theta^{2r-1} + \sum_{i=1}^{r} a_{2r-2i}\pi^{2i}\theta^{2r-2i}.$$
(20)

The proof would be over in one can show that above statement is true for k = r + 1, that is,

$$\sum_{n=0}^{\infty} \frac{\cos(2n+1)\theta}{(2n+1)^{2(r+1)}} = a_{2r+1}\pi\theta^{2r+1} + \sum_{i=1}^{r+1} a_{2r-2i+2}\pi^{2i}\theta^{2r-2i+2}.$$
(21)

Integration of (20) with respect to heta provides

$$\sum_{n=0}^{\infty} \frac{\sin(2n+1)\theta}{(2n+1)^{2r+1}} + c = \frac{a_{2r-1}}{2r} \pi \theta^{2r} + \sum_{i=1}^{r} \frac{a_{2r-2i}}{(2r-2i+1)} \pi^{2i} \theta^{2r-2i+1}.$$
 (22)

Substitution of $\theta = 0$ shows that c = 0, which turns (22) into

$$\sum_{n=0}^{\infty} \frac{\sin(2n+1)\theta}{(2n+1)^{2r+1}} = \frac{a_{2r-1}}{2r} \pi \theta^{2r} + \sum_{i=1}^{r} \frac{a_{2r-2i}}{(2r-2i+1)} \pi^{2i} \theta^{2r-2i+1}.$$
(23)

Integration of (23) with respect to heta produces the equation

$$-\sum_{n=0}^{\infty} \frac{\cos(2n+1)\theta}{(2n+1)^{2r+2}} + c = \frac{a_{2r-1}}{2r(2r+1)}\pi\theta^{2r+1} + \sum_{i=1}^{r} \frac{a_{2r-2i}}{(2r-2i+1)(2r-2i+2)}\pi^{2i}\theta^{2r-2i+2}.$$
 (24)

Setting $\theta = 0$ gives $c = \sum_{n=0}^{\infty} \frac{1}{(2n+1)^{2(r+1)}} = a_0 \pi^{2(r+1)}$ after repeated integration of (18a). Then (24)

becomes

$$\sum_{n=0}^{\infty} \frac{\cos(2n+1)\theta}{(2n+1)^{2r+2}} = a_0 \pi^{2(r+1)} - \frac{a_{2r-1}}{2r(2r+1)} \pi \theta^{2r} - \sum_{i=1}^{r} \frac{a_{2r-2i}}{(2r-2i+1)(2r-2i+2)} \pi^{2i} \theta^{2r-2i+2}.$$
 (25)

Combining the first term of the right side of (25) with the summation term and writing

$$a_{2r+1} = -\frac{a_{2r-1}}{2r(2r+1)} \text{ results in}$$

$$\sum_{n=0}^{\infty} \frac{\cos(2n+1)\theta}{(2n+1)^{2(r+1)}} = a_{2r+1}\pi\theta^{2r+1} + \sum_{i=1}^{r+1} a_{2r-2i+2}\pi^{2i}\theta^{2r-2i+2}.$$
(26)

This establishes the first part of Theorem 1.1. Following the same technique as in the proof of the above, one can prove the second part of it.

4. Acknowledgements

The author would like to thank Dr. Khristo Boyadzhiev of Ohio Northern University for encouraging him (author) to find the connections between the numbers $B_n \& a_n$ and $E_n \& b_n$.

5. References

- [1] Blatner D (1997) The Joy of Π , Walker and Company, New York.
- [2] Edwards HM (2001) Riemann's Zeta Function, Dover Publications, Inc.
- [3] Euler L (1755) Institutiones Calculi Differentialis, Pt.2, Chapters 5 and 6, Acad. Imp. Sci.
 Petropolitane, St. Petersburg ("Opera" (1), Vol. 10.)
- [4] Euler L (1988) Introduction to Analysis of the Infinite, Vol. 1, (Translation by J. D. Blaton), Springer-Verlag.
- [5] Karim MR (2010) The Sums of Alternating Series of Odd Powers of the Reciprocals of the Odd Positive Integers, KBM Journal of Mathematical Sciences & Computer Applications, 1(1): 18-26.
- [6] Markushevich AI (1977) Theory of Functions (3 Volumes in One), Chelsea.
- [7] Nahin PJ (2006) Dr. Euler's fabulous Formula, Princeton University Press.
- [8] Scheufens EE (2012) Euler Polynomials, Fourier Series and Zeta Numbers, International Journal of Pure and Applied Mathematics 78(1): 37-47.
- [9] Yue ZN and KS Williams (1993) Some Series Representations of $\zeta(2n+1)$ ", Rocky Mountain Journal of Mathematics 23 (4): 1581-1592.
- [10] Williams KS and ZN Yue (1993) Special Values of the Lerch Zeta Function and the Evaluation of Certain Integrals, Proceedings of the American Mathematical Society 119 (1): 35-49.