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Abstract

Foodborne bacterial infections remain a major public health concern, contributing to significant morbidity and mortality world-
wide. Understanding the genomic and epidemiological factors that influence bacterial mortality rates is crucial for developing 
effective risk assessment strategies. In this study, we applied machine learning (ML) models to predict mortality rates of  50 food-
borne bacterial species using genomic, virulence, antimicrobial resistance (AMR), and epidemiological features. Five regression 
models were evaluated: Linear Regression (LR), Random Forest (RF), Gradient Boosting Regressor (GBR), Support Vector Regres-
sor (SVR), and K-Nearest Neighbors (KNN). Our results indicate that ensemble models (RF, GBR) outperformed traditional linear 
regression in capturing the complex relationships between bacterial features and mortality rates. Feature importance analysis 
revealed that annual reported cases worldwide, genome size, GC content, and virulence gene count are the strongest predictors of  
mortality. Interestingly, AMR gene count had a lower-than-expected impact, suggesting that antibiotic resistance alone does not 
strongly determine mortality outcomes. SHapley Additive exPlanation (SHAP) analysis confirmed the significance of  genomic and 
epidemiological factors in shaping model predictions. However, all models exhibited low R² scores and high Mean Absolute Error 
(MAE), indicating room for improvement. Residual analysis suggests that outliers and data variability may be limiting model per-
formance. Future research should explore larger datasets, feature engineering, and advanced deep learning approaches to enhance 
predictive accuracy. Despite these limitations, this study demonstrates the potential of  ML in quantifying bacterial pathogenicity 
and informing food safety and public health decision-making.

Keywords: Foodborne bacteria, Machine learning (ML), Mortality prediction, Antimicrobial resistance, Gradient Boosting Regres-
sor (GBR), Random Forest (RF), SHAP analysis, Public health.
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1. Introduction

Foodborne diseases pose a significant global public health threat, contribut-
ing to considerable morbidity and mortality worldwide. The World Health Or-
ganization (WHO) estimates that approximately 600 million cases of  foodborne 
illnesses occur annually, resulting in 420,000 deaths (Bhaskar, 2017; Almaary, 
2023). These infections are primarily caused by bacteria, viruses, parasites, 
and toxins, with bacterial pathogens being among the most prominent cul-
prits. Some bacteria, such as Salmonella spp., Escherichia coli (STEC), Listeria 
monocytogenes, and Vibrio cholerae, exhibit marked differences in mortality 
rates, with certain strains demonstrating heightened virulence and antibiotic 
resistance (Ritter et al., 2019; Gyles and Boerlin, 2023).

The severity of  foodborne illnesses varies depending on host factors, bacte-
rial virulence mechanisms, and the presence of  antimicrobial resistance (AMR) 
genes (Ritter et al., 2019). While some foodborne bacterial infections result in 
self-limiting gastroenteritis, others can lead to life-threatening complications 
such as hemolytic uremic syndrome (HUS), septicemia, and meningitis (Jiang et 
al., 2022). The increasing prevalence of  antibiotic-resistant pathogens further 
complicates treatment, increasing hospitalization rates, healthcare costs, and fa-
tality risks (Bhagwat and Bhagwat, 2008; Lim et al., 2016; Allard et al., 2018). 
Therefore, understanding the genomic and epidemiological factors that drive 
mortality rates is critical for developing risk assessment models, guiding public 
health interventions, and prioritizing high-risk pathogens.

Recent advances in genomics and machine learning (ML) provide new op-
portunities to quantify and predict the impact of  bacterial characteristics on 
disease outcomes. By leveraging large-scale bacterial genome sequencing data 
and epidemiological records, ML models can help identify key genomic deter-
minants of  virulence and resistance, improving predictions of  infection severity 
(Jones et al., 2012). However, despite the growing availability of  bacterial ge-
nomic datasets, predictive models capable of  integrating genetic and epidemio-
logical factors to estimate mortality risks remain underexplored.

Traditional approaches to understanding bacterial virulence and mortal-
ity risk have relied on experimental microbiology, epidemiological studies, and 
genome-wide association studies (GWAS) (Bhagwat and Bhagwat, 2008; Lim et 
al., 2016; Allard et al., 2018). While these methods have provided valuable in-
sights into individual bacterial traits, they often fall short in predicting mortality 
rates in a quantitative and scalable manner.

Traditional methods for assessing bacterial virulence and mortality risk, 
such as experimental microbiology, epidemiological studies, and genome-wide 
association studies (GWAS), have provided important insights into individual 
bacterial traits (Bhagwat and Bhagwat, 2008; Lim et al., 2016; Allard et al., 
2018). However, these approaches lack the scalability and predictive capability 
needed to quantify mortality rates across multiple pathogens. While previous 
studies have identified specific virulence genes and antibiotic resistance markers 
associated with disease severity (Ritter et al., 2019; Asnicar et al., 2024), few 
have attempted to develop integrated machine learning models that combine 
multiple genomic and epidemiological factors for mortality prediction.

Another limitation in current research is the lack of  understanding of  
feature interactions. Most existing models analyze individual genetic traits in 
isolation, rather than evaluating how multiple factors—such as genome size, 
GC content, virulence gene count, and antimicrobial resistance (AMR) genes—
collectively influence bacterial mortality rates (Ritter et al., 2019; Jiang et al., 
2022). Machine learning (ML) has demonstrated promise in fields like disease 
outbreak prediction and antimicrobial resistance profiling (Jones et al., 2012; 
Ritter et al., 2019), yet its application in mortality risk prediction for foodborne 
pathogens remains largely unexplored. This study aims to fill these gaps by de-
veloping ML models that integrate genomic, virulence, antibiotic resistance, 
and epidemiological data to predict bacterial mortality rates more effectively.

This study aims to develop and evaluate machine learning models for pre-
dicting mortality rates (%) of  50 foodborne bacterial species based on their 
genomic, virulence, antimicrobial resistance (AMR), and epidemiological char-
acteristics. Key features include genome size, GC content, gene count, virulence 
gene count, AMR genes, and annual reported cases worldwide. By comparing 
multiple ML algorithms, this study seeks to identify the most important bacterial 
traits influencing mortality and determine which models provide the most ac-
curate and interpretable predictions. The findings could inform risk assessment 
strategies, public health policies, and food safety regulations.

We hypothesize that ensemble-based models (e.g., Random Forest, Gradi-

ent Boosting) will outperform linear regression in predicting mortality rates due 
to their ability to capture complex, non-linear relationships between bacterial 
features and disease severity. Among the most influential predictors, we expect 
virulence gene count (as a measure of  pathogenic potential), AMR gene count 
(as a factor in treatment failure), and annual reported cases (as an indicator of  
transmission potential) to have the strongest impact. By validating these hypoth-
eses, this study aims to develop a computational framework for mortality risk 
prediction in foodborne pathogens, supporting food safety monitoring, clinical 
decision-making, and public health preparedness.

2. Methods

2.1. Dataset and Features

The dataset consists of  50 foodborne bacterial species collected from public 
repositories, including NCBI, Google, and WHO websites. Each bacterial spe-
cies is characterized by multiple genomic, virulence, antimicrobial resistance 
(AMR), and epidemiological factors.

For feature selection, only numerical variables were included in the analysis, 
such as genome size (Mb), gene number, GC content (%), virulence gene count, 
AMR gene count, and annual reported cases worldwide. Categorical variables 
(e.g., bacterial species and family) were excluded to ensure compatibility with 
machine learning (ML) regression models, which require numerical inputs (As-
nicar et al., 2024).

2.2. Machine Learning Workflow

2.2.1. Preprocessing

Before training, all numerical features were standardized using Min-Max 
Scaling to normalize values between 0 and 1, preventing models from being bi-
ased toward larger numerical ranges (Bishop, 2006). Missing values, if  present, 
were handled using imputation techniques to ensure a complete dataset (Little 
and Rubin, 2020).

2.2.2. Train-Test Split

The dataset was split into 80% training and 20% test sets, ensuring that 
models were trained on a diverse subset of  bacterial species while maintaining 
a separate evaluation set for validation (Hastie et al., 2009).

2.3. Model Training

To predict mortality rates (%), five machine learning regression models were 
trained and compared:

•	 Linear Regression (LR) – A simple, interpretable baseline model for 
assessing linear relationships between bacterial features and mortality 
rates (Montgomery et al., 2012).

•	 Random Forest Regressor (RF) – An ensemble learning approach 
that improves accuracy by aggregating multiple decision trees and cap-
turing non-linear patterns (Breiman, 2001).

•	 Gradient Boosting Regressor (GBR) – A boosting algorithm that 
sequentially improves predictions by minimizing errors from previous 
iterations (Friedman, 2001).

•	 Support Vector Regressor (SVR) – A kernel-based model that maps 
features into higher-dimensional space to capture complex relationships 
(Smola and Schölkopf, 2004).

•	 K-Nearest Neighbors Regressor (KNNR) – A distance-based 
learning model that predicts mortality rates based on the closest bacte-
rial species in the feature space (Altman, 1992).

Each model was tuned for optimal performance using hyperparameter ad-
justments and evaluated on the test set.
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2.4. Model Evaluation

The models were assessed using two primary performance metrics:

•	 R² Score – Measures the proportion of  variance in mortality rates ex-
plained by the model, indicating predictive strength (Draper and Smith, 
1998).

•	 Mean Absolute Error (MAE) – Calculates the average absolute differ-
ence between predicted and actual mortality rates, providing an inter-
pretable measure of  prediction accuracy (Willmott and Matsuura, 2005).

To enhance generalization, k-fold cross-validation (k=5) was implemented, 
ensuring robust model evaluation across different data subsets (Kohavi, 1995). 
This approach minimizes bias and variance in performance estimates by train-
ing and testing models on multiple partitions of  the dataset.

2.5. Tools and Libraries

All data analysis and modeling were conducted in Python 3.9, using the fol-
lowing open-source libraries:

•	 Pandas (v1.5.3) (McKinney, 2010): Data manipulation and analysis
•	 NumPy (v1.24.1) (Harris et al., 2020): Numerical computing
•	 Scikit-learn (v1.2.2) (Pedregosa et al., 2011): Machine learning models, 

metrics, preprocessing, and cross-validation
•	 Matplotlib (v3.7.0) (Hunter, 2007) and Seaborn (v0.12.2) (Waskom, 

2021): Data visualization

•	 SHAP (v0.41.0) (Lundberg and Lee, 2017): SHapley Additive exPlana-
tions for model interpretability

•	 Jupyter Notebook (v6.5.2) (Kluyver et al., 2016): Interactive develop-
ment environment

All analyses were performed on a standard personal computer (Mac Book 
Pro) running Mac OS Sonoma 14.4.1.

3. Results

All five regression models—Linear Regression (LR), Random Forest (RF), 
Gradient Boosting Regressor (GBR), Support Vector Regressor (SVR), and K-
Nearest Neighbors (KNN)—were evaluated using R² Score and Mean Absolute 
Error (MAE). As shown in Table 1, Linear Regression produced extreme nega-
tive R² values, indicating poor generalization. Ensemble models such as RF and 
GBR outperformed LR, although their R² scores remained below zero. SVR 
achieved the lowest MAE (8.79), suggesting more stable predictions, but its R² 
score was still weak (Table 1).

3.1. Feature Importance & Correlations

Figure 1 compares feature importance scores from Random Forest (blue) 
and Gradient Boosting (orange) models, identifying key predictors of  bacte-
rial mortality rates. “Annual cases worldwide” is the most influential feature, 
suggesting that the frequency of  infections strongly correlates with mortality 
risk. “GC content (%)” and “genome size (Mb)” also play significant roles, in-
dicating potential genomic influences on bacterial virulence and survivability. 
“Virulence gene number” is another critical predictor, emphasizing its direct 
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Figure 1. Model performance metrics (MAE and R² score) for five machine learning regressors. Each model is evaluated using Mean Absolute Error and 
R² Score, plotted on a mirrored scale to show comparative prediction quality. Negative R² values indicate that predictions were worse than the mean-based 
baseline. Linear regression performed especially poorly, while ensemble models like Gradient Boosting and Random Forest were more stable.

Table 1. Performance metrics of  five machine learning models for predicting mortality rates of  foodborne 
bacterial species. R² Score reflects the proportion of  variance explained (ideal values are closer to 1), while 
Mean Absolute Error (MAE) indicates the average magnitude of  prediction error (lower is better). Ensem-
ble models (Random Forest, Gradient Boosting) outperformed Linear Regression, which produced highly 
unstable predictions. SVR yielded the lowest MAE, but all models had poor R² performance.

R² Score        MAEML Model
84.53-255.95Linear Regression
14.27-0.87Random Forest
14.67-0.96Gradient Boosting
8.79-0.05Support Vector Regressor
15.10-0.91K-Nearest Neighbors
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link to pathogenic potential. While AMR gene count is moderately important 
in Random Forest, it has lower significance in Gradient Boosting, implying that 
resistance genes alone may not strongly dictate mortality. The “gene number” 
feature has minimal impact, suggesting that total gene count is less predictive 
compared to specific virulence and epidemiological factors. Overall, both mod-
els highlight the interplay between genomic attributes, resistance factors, and 
global infection trends in determining bacterial mortality rates (Figure 1).

Figure 2 visualizes the correlation between key bacterial genomic, epide-
miological, and mortality rate features. Genome size is positively correlated with 
GC content (0.67) and gene number (0.55), which is expected as larger genomes 
generally contain more genes and higher GC content. Mortality rate shows 
weak correlations with all features, with the highest being genome size (0.24), 
suggesting that genome characteristics alone do not strongly predict mortal-
ity. Annual cases worldwide have little correlation with any genomic features, 
indicating that bacterial prevalence is independent of  genome size, virulence, 
or resistance traits. Virulence gene count and AMR genes show almost no cor-
relation with mortality rate, implying that factors beyond genetic attributes (e.g., 
host factors, environmental conditions) play a significant role in mortality out-
comes. Overall, the heatmap suggests that no single genomic or epidemiological 
factor strongly determines bacterial mortality rates, highlighting the need for 
more complex models to capture underlying patterns (Figure 2).

3.2. Model Performance Comparison

A comparison of  the actual mortality rates (%) of  foodborne bacterial spe-
cies to the predicted values from different machine learning models is shown 
in Figure 3. The red dashed line represents the ideal case where predictions 
perfectly match actual values. Deviations from this line indicate prediction er-
rors. Results show that Linear Regression (LR) performed poorly, with extreme 
negative predictions and a wide spread of  errors. It failed to capture the non-
linearity in the data, suggesting that a simple linear approach is inadequate for 

predicting mortality rates. Random Forest (RF) model predictions are closer 
to the actual values but show noticeable variability. The model captures some 
trends but struggles with extreme values, likely due to overfitting on certain data 
points. Among all models, Gradient Boosting Regressor (GBR) performed best, 
with predictions relatively aligned along the red dashed line. It demonstrates 
improved handling of  non-linearity, though some underestimation of  higher 
mortality rates persists. Support Vector Regressor (SVR) model appears too 
conservative, clustering predictions around lower mortality rates. This suggests 
difficulty in capturing variations, possibly due to improper kernel selection or 
inadequate feature scaling. K-Nearest Neighbors (KNN) model shows high vari-
ance, with inconsistent predictions, particularly for higher mortality rates. This 
suggests that the model struggles with generalization and may be overly sensi-
tive to local data distributions (Figure 3). Overall, GBR exhibits the best overall 
performance, capturing mortality trends more accurately. The results suggest 
that non-linear ensemble models (GBR, RF) are better suited for mortality rate 
prediction due to their ability to capture complex relationships between bacte-
rial genomic and epidemiological features.

Figure 4 shows the differences between actual and predicted mortality rates 
for the Gradient Boosting Regressor. Ideally, residuals should be symmetrically 
centered around zero (red dashed line), indicating unbiased predictions. How-
ever, the distribution appears spread out and slightly skewed, with some large 
positive and negative residuals, suggesting that the model overestimates or un-
derestimates mortality rates for certain bacteria. The presence of  extreme resid-
uals (e.g., beyond ±30) indicates potential outliers or complex patterns that the 
model struggles to capture. While Gradient Boosting provides relatively good 
performance, further tuning or additional feature engineering may be needed 
to improve prediction accuracy (Figure 4).

Figure 5 compares the performance of  five machine learning models us-
ing R² score (blue, left axis) and Mean Absolute Error (MAE, orange, right 
axis). A higher R² score indicates better predictive accuracy, while a lower MAE 
suggests smaller prediction errors. Surprisingly, Linear Regression shows an 

Figure 2. Correlation heatmap of  numerical genomic and epidemiological features across 50 foodborne bacterial species. The matrix 
shows Pearson correlation coefficients, revealing moderate correlations among genomic features such as genome size, GC content, and 
gene number. Mortality rate exhibits weak correlations with all variables, suggesting the need for complex models to capture feature 
interactions.
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Figure 3. Actual vs. predicted mortality rates for five ML models. Scatter plots show predicted mortality rate (%) versus actual observed values, with a dashed red line repre-
senting perfect prediction. Gradient Boosting and Random Forest approximated the trend better than Linear Regression, which produced extreme outliers. SVR and KNN 
models showed underfitting tendencies with predictions clustering around the mean.

Figure 4. Feature importance scores from Random Forest and Gradient Boosting models. Bar plots dis-
play normalized importance values for each feature. Both models identified annual reported cases, GC 
content, genome size, and virulence gene count as top predictors. AMR genes and total gene number 
contributed less to model performance.

Figure 5. Residual distribution plot for Gradient Boosting Regressor predictions. Histogram of  residuals 
(actual – predicted) reveals a slight left skew, with a KDE curve indicating a tendency for overprediction. 
The red dashed line at zero denotes ideal prediction. A few large residuals suggest the model struggled 
with some outliers.
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extremely high MAE, indicating severe prediction errors despite its simplicity. 
The Random Forest, Gradient Boosting, Support Vector Regressor, and K-
Nearest Neighbors models all have low R² scores, suggesting poor predictive 
power. The results indicate that none of  the models are performing well, and 
further improvements—such as feature engineering, hyperparameter tuning, or 
using more advanced models—may be necessary to achieve better predictions 
(Figure 5).

Figure 6 visualizes how different features impact the mortality rate predic-
tions of  the model. Features with higher absolute SHAP values have a greater 
influence on model output. “Genome size (Mb)” and “GC content (%)” have 
the strongest effects, with higher values (red) generally increasing predictions. 
“Annual cases worldwide” shows moderate influence, suggesting that frequently 
occurring bacteria impact mortality rates. “Virulence gene number” has mixed 
effects, indicating that its role in mortality prediction varies by species. “AMR 
genes” and “Gene number” have relatively lower impact, suggesting antibi-
otic resistance alone may not be a primary driver of  mortality in this dataset. 
Overall, the model relies heavily on genomic attributes and infection prevalence 
rather than resistance genes, highlighting the complexity of  bacterial pathoge-
nicity (Figure 6). 

4. Discussion

The results of  this study highlight both the potential and limitations of  
machine learning-based mortality rate prediction for foodborne bacteria. The 
ensemble models (Random Forest and Gradient Boosting) showed moderate 
predictive power, outperforming Linear Regression, which failed to capture the 
non-linear relationships between genomic and epidemiological factors. These 
findings align with previous studies showing that tree-based models are better 
suited for biological datasets with complex interactions (Breiman, 2001; Fried-
man, 2001).

One of  the most notable findings is that annual reported cases worldwide, 
genome size, and GC content were the most influential features in mortality pre-
diction. The strong influence of  annual cases suggests that bacterial prevalence 
in human populations is a key determinant of  mortality rates. This observation 
aligns with epidemiological studies indicating that highly transmissible patho-
gens tend to cause higher mortality burdens (Jones et al., 2012). The importance 
of  genome size and GC content may reflect underlying genetic adaptations that 
enhance bacterial survival and virulence (Bhagwat and Bhagwat, 2008; Lim et 
al., 2016; Allard et al., 2018).

Surprisingly, AMR gene count was not a major predictor of  mortality. 
While antibiotic resistance increases treatment difficulty, it does not necessar-
ily correlate with higher intrinsic virulence (Jiang et al., 2022). Some AMR-
carrying bacteria may exhibit lower virulence potential, emphasizing the need 
to analyze both resistance and virulence mechanisms together rather than in 
isolation.

Despite these insights, the study reveals several challenges in using ML for 

mortality rate prediction. The low R² scores and high MAE indicate that the 
models struggle with capturing the full complexity of  bacterial pathogenicity. 
This could be due to small sample size (n=50), which limits the model’s ability 
to generalize across diverse bacterial species. Additionally, host-related factors 
(e.g., immune response, underlying health conditions) and environmental influ-
ences were not included, potentially reducing predictive accuracy.

Future work should focus on expanding the dataset, integrating additional 
biological features (e.g., toxin production, metabolic pathways), and testing deep 
learning architectures. The incorporation of  graph-based models to analyze 
bacterial genome interactions could provide further improvements (Asnicar et 
al., 2024). Additionally, transfer learning from larger microbial datasets could 
enhance model performance and robustness.

Despite these limitations, this study demonstrates the value of  machine 
learning in microbiology, providing a foundation for future research in patho-
gen risk assessment, epidemiological modeling, and genomic feature selection 
for food safety applications.

5. Conclusion

This study applied machine learning models to predict mortality rates of  50 
foodborne bacterial species using genomic, virulence, antimicrobial resistance, 
and epidemiological data. The results indicate that ensemble models (Random 
Forest, Gradient Boosting) outperform traditional regression approaches, with 
annual cases, genome size, and GC content emerging as key predictors. The 
study also highlights the limitations of  current ML models, including low pre-
dictive accuracy and the need for more complex feature interactions. Future 
research should explore larger datasets, additional biological factors, and ad-
vanced ML techniques to enhance model reliability. Despite these challenges, 
this study demonstrates the potential of  machine learning for bacterial patho-
genicity assessment, providing valuable insights for food safety monitoring and 
public health decision-making.

This study represents a first step toward using ML for bacterial mortality 
prediction. Future improvements will enhance model reliability, interpretability, 
and real-world applicability in public health and food safety monitoring.
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