On Regular Pre-Semiclosed Sets in Topological Spaces

T. Shyla Isac Mary 1* and P.Thangavelu 2

¹ Department of Mathematics, Nesamony Memorial Christian College, Martandam- 629165, India

² Department of Mathematics, Aditanar college, Tiruchendur-628216, India *E-mail: <u>shylaisaacmary@yahoo.in</u>

Received April 15, 2010 / Accepted May 18, 2010

Abstract

The generalized closed sets in point set topology have been found considerable interest among general topologists. Veerakumar introduced and investigated pre-semi- closed sets and Anitha introduced pgprclosed sets. In this article the concept of regular pre-semiclosed sets is introduced in topological spaces and its relationships with other generalized sets are investigated.

Keywords: pre-semiclosed, pgpr-closed, semi-preclosure, rg-open and g-open sets.

Introduction

Levine[9] introduced generalized closed (briefly g-closed) sets in topology. Researchers in topology studied several versions of generalized closed sets. In this paper the concept of regular pre-semiclosed (briefly rps-closed) set is introduced and their properties are investigated. This class of sets is properly placed between the class of semi-preclosed sets and the class of pre-semiclosed sets. Certain preliminary concepts are given in the section 2, the concept of rps-closedness is studied in section 3 and the reference is given at the end followed by a diagram that gives the relationships among the generalized closed sets in topological spaces.

Preliminaries

Throughout this paper X and Y represent the topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a topological space X, c/A and intA denote the closure of A and the interior of A respectively. X\A denotes the complement of A in X. Throughout the paper \Box indicates the end of the proof. We recall the following definitions.

Definition 2.1

A subset A of a space X is called

- (i) pre-open [12] if $A \subseteq$ int clA and pre-closed if cl intA \subseteq A;
- (ii) semi-open [8] if $A \subseteq cl$ intA and semi-closed if int $clA \subseteq A$;
- (iii) semi-pre-open [1] if $A \subseteq cl$ int clA and semi-pre-closed if int cl int $A \subseteq A$;
- (iv) α -open [14] if A \subseteq int cl intA and α -closed if cl int clA \subseteq A;
- (v) regular open [17] if A = int clA and regular closed if A = cl intA.
- (vi) *n*-open [22] if A is a finite union of regular open sets.

The semi-pre-closure(resp. semi-closure, resp. pre-closure, resp. α -closure) of a subset A of X is the intersection of all semi-pre-closed (resp. semi-closed, resp. pre-closed, resp. α -closed) sets containing A and is denoted by *spclA* (resp. *sclA*, resp.*pclA*, resp.*qclA*).

Definition 2.2

- A subset A of a space X is called
- (i) generalized closed[9] (briefly g-closed) if $cIA \subseteq U$ whenever $A \subseteq U$ and U is open.
- (ii) regular generalized closed[15](briefly rg-closed) if c/A ⊆ U whenever A⊆U and U is regular open.
- (iii) a-generalized closed[10](briefly ag-closed) if $aclA \subseteq U$ whenever $A \subseteq U$ and U is open.
- (iv) generalized-semi pre-regular-closed [16] (briefly gspr-closed) if $spc/A \subseteq U$ whenever $A \subseteq U$ and U is regular-open.
- (v) generalized semi-closed [3](briefly gs-closed) if $sclA \subseteq U$ whenever $A \subseteq U$ and U is open.
- (vi) π -generalized closed [5](briefly π g-closed) if c/A \subseteq U whenever A \subseteq U and U is π -open.
- (vii) generalized pre-closed [11](briefly gp-closed) if $pclA \subseteq U$ whenever $A \subseteq U$ and U is open.
- (viii) generalized semi-pre-closed [4](briefly gsp-closed) if *spclA*<u>U</u> whenever A<u>U</u> and U is open.

- (ix) π -generalized pre-closed [7] (briefly π gp-closed) if $pc/A \subseteq U$ whenever $A \subseteq U$ and U is π -open.
- (x) generalized pre-regular closed[6](briefly gpr-closed) if pclA ⊆U whenever A⊆U and U is regular open.
- (xi) weakly generalized closed[13] (briefly wg-closed)if cl intA⊆ U whenever A⊆U and U is open.
- (xii) *n*-generalized semi-pre-closed[16](briefly *n*gsp-closed) if spc/A \subseteq U whenever A \subseteq U and U is *n*-open.
- (xiii) regular weakly generalized closed[19](briefly rwg-closed) if cl intA⊆U whenever A⊆U and U is regular open.

The complements of the above mentioned closed sets are their respective open sets. For example a subset B of a space X is generalized open (briefly g-open) if $X \setminus B$ is g-closed.

Definition 2.3

A subset A of a space X is called

- (i) pre-semiclosed [20] if spc/A $\subseteq \! U$ whenever A $\subseteq \! U$ and U is g-open.
- (ii) pre-generalized pre-regular-closed[2] (briefly pgpr-closed) if pc/A⊆U whenever A⊆U and U is rg-open.

The complements of the above mentioned closed sets are their respective open sets.

The following lemmas will be useful in sequel.

Lemma 2.4 [2]

If A is semi closed then pcl (A \cup B) = pcl A \cup pcl B.

Lemma 2.5 [1]

For any subset A of X, the following results hold:

(i)
$$sclA = A \cup int clA$$
;

(ii)
$$pclA = A \cup cl intA;$$

(iii)
$$spclA = A \cup int cl intA$$
.

Lemma 2.6 [18]

If A is semi closed in X , then $cl int(A \cup B) = cl intA \cup cl intB$.

Lemma 2.7 [6]

If A is regular-open and gpr-closed then A is pre-closed and hence clopen.

Definition 2.8

A space X is called extremally disconnected [21] if the closure of each open subset of X is open

Regular pre-semiclosed sets

Veerakumar[20] introduced pre-semiclosed sets in the year 2002 and Anitha et al.[2] introduced pgpr-closed sets by replacing "spcl" by "pcl" and "g-open" by "rg-open" in the definition of pre-semiclosed sets. In an analog way the regular pre-semiclosed sets are defined by replacing "g-open" by "rg-open". If every rg-open neighbourhood of A contains its semipreclosure, then A is called a regular pre-semiclosed subset. The formal definition of this concept is as follows.

Definition 3.1

A subset A of a space X is called regular pre-semiclosed (briefly rps-closed) if $spc/A \subseteq U$ whenever $A \subseteq U$ and U is rgopen.

Proposition 3.2

(i) Every semi-pre-closed set is rps-closed.

- (ii) Every pgpr-closed set is rps-closed.
- (iii) Every pre-closed set is rps-closed.
- (iv) Every α -closed set is rps-closed.
- (v) Every regular closed set is rps-closed.

Proof

(i) Let A be a semi-pre-closed set in X. Since spc|A = A, it follows that A is rps-closed.

(ii) Let A be a pgpr-closed set in X. Let $A \subseteq U$ and U is rg-open. Since A is pgpr-closed,

 $pclA \subseteq U$. Again since $spclA \subseteq pclA$, we see that $spclA \subseteq U$. Therefore A is rps-closed

(iii) follows from (ii) and the fact that every pre-closed set is pgpr-closed .

(iv) follows from (iii) and the fact that every α -closed set is pre-closed.

(v) Let A be a regular closed subset of X .Let A \subseteq U and U is rg-open. Since A is regular-closed ,A = cl intA. cl intA \subseteq U and U is rg-open. int cl intA \subseteq intU \subseteq U and U is rg-open.

 $A \cup int \ cl \ intA \subseteq A \cup U \subseteq U$ and U is rg-open. spclA $\subseteq U$ whenever $A \subseteq U$ and U is rg-open. Therefore A is rps-closed.

The reverse implications are not true as shown in Example 3.4 and Example 3.5.

Proposition 3.3

(i) Every rps-closed set is pre-semi-closed.

- (ii) Every rps-closed set is gspr-closed.
- (iii) Every rps-closed set is gsp-closed.

Proof

(i) Let A be a rps-closed subset of a space X. Let $A \subseteq U$ where U is g-open. Since every g-open set is rg-open and since A is rps-closed, by Definition 2.3(i), A is pre-semi-closed.

(ii) Let A be a rps-closed subset of a space X. Let $A \subseteq U$ and U is regular-open. Since every regular-open set is rgopen and since A is rps-closed, by Definition 2.2 (iv), spc/A \subseteq U.

Therefore A is gspr-closed.

(iii) Let A be a rps-closed subset of a space X. Let A \subseteq U and U is open . Since every open set is g-open and since every g-open set is rg-open, *spclA* \subseteq U and hence A is gsp-closed.

The reverse implications are not true as shown in Example 3.4.

Example 3.4

Let X = {a,b,c,d} with topology $\tau = \{\phi, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}, X\}$. Then

- (i) {a,b,d} is rps-closed but not semi-pre-closed.
- (ii) {b,d} is pre-semiclosed but not rps-closed .
- (iii) {a} is rps-closed but not pgpr-closed set.
- (iv) {a,b} is gspr-closed but not rps-closed.
- (v) {b,c} is rps-closed but not pre-closed.
- (vi) {b,c} is rps-closed but not α -closed.

(vii){b,d} is gsp -closed but not rps-closed.

Example 3.5

Let $X = \{a,b,c\}$ with topology $\tau = \{\phi,\{a,b\},X\}$. Then $\{a\}$ is rps-closed but not regular-closed.

The concept of rwg-closed, wg-closed, gpr-closed, π g-closed, π gp-closed, gp-closed, rg-closed, α g-closed sets are independent with the concept of rps-closed as shown in the following example.

Example 3.6

Let X = {a,b,c,d} with topology $\tau = {\phi,{a},{b},{a,b},{b,c},{a,b,c},X}$.

- (i) $\{a\}$ is rps-closed but not rwg-closed and $\{a,b\}$ is rwg-closed but not rps-closed.
- (ii) $\{a\}$ is rps-closed but not wg-closed and $\{b,d\}$ is wg-closed but not rps-closed.
- (iii) {a} is rps-closed but not gpr-closed and {b} is gpr-closed but not rps-closed.
- (iv) {a} is rps-closed but not π g-closed and {b,d} is π g-closed but not rps-closed.
- (v) $\{\alpha\}$ is rps-closed but not π gp-closed and $\{b,d\}$ is π gp-closed but not rps-closed
- (vi) {b,d} is gp-closed but not rps-closed and {a,b,d} is rps-closed but not gp-closed.
- (vii) $\{a,b\}$ is rg-closed but not rps-closed and $\{a\}$ is rps-closed but not rg-closed.
- (viii) {a} is rps-closed but not α g-closed and {b,d} is α g-closed but not rps-closed.

The concept of g-closed and rps-closed sets are independent as shown in the following example.

Example 3.7

Let $X = \{a,b,c,d\}$ with $\tau = \{\phi,\{a\},\{a,b\},X\}$. Then $\{b\}$ is rps-closed but not g-closed and $\{a,c\}$ is g-closed but not rps-closed.

The concept of gs-closed and rps-closed sets are independent as shown in the following example.

Example 3.8

Let $X = \{a,b,c\}$ with topology $\tau = \{\phi,\{a,b\},X\}$. Then $\{a\}$ is rps-closed but not gs-closed. From Example 3.6 we see that $\{b,d\}$ is gs-closed but not rps-closed.

Thus the above discussions lead to the implication diagram given at the end. In this diagram by "A \rightarrow B" we mean A implies B but not conversely and

"A \blacksquare "B" means A and B are independent of each other.

The Union and intersection of two rps-closed sets need not be rps-closed as shown in the following example.

Example 3.9

Let $X = \{a,b,c,d\}$ with $\tau = \{\phi,\{a\},\{b\},\{a,b\},\{b,c\},\{a,b,c\},X\}$. Then $A = \{a\}$,

 $B = \{b,c\}$ and $C = \{a,b,d\}$. Here A and B are rps-closed but $A \cup B = \{a,b,c\}$ is not rps-closed. Also B and C are rps-closed but $B \cap C = \{b\}$ is not rps-closed.

Theorem 3.10

If A is regular-open and A is gpr-closed then A is (i) rps-closed (ii) gspr-closed.

Proof

Follows from Lemma 2.7 and Diagram 1

Theorem 3.11

If A is semi-closed then spcl (A \cup B) = spclA \cup spclB.

Proof

Suppose A is semi-closed. By Lemma 2.5(iii),

spcl $(A \cup B) = (A \cup B) \cup int cl int(A \cup B)$.

 $spcl(A \cup B) = (A \cup B) \cup int [cl intA \cup cl intB]$ by applying Lemma 2.6.

= $(A \cup B) \cup [$ int cl intA \cup int cl intB]

=(A \cup int cl intA] \cup [B \cup int cl intB]

=
$$[A \cup int \ cl \ intA] \cup [B \cup int \ cl \ intB]$$

spcl (A \cup B) = spclA \cup spclB.

Theorem 3.12

Let A and B be rps-closed sets and let A be semi-closed. Then $A \cup B$ is rps-closed.

Proof

Let $A \cup B \subseteq U$ and U be rg-open. Then $A \subseteq U$ and $B \subseteq U$. Since A and B are rps-

closed sets $spc/A \subseteq U$ and $spc/B \subseteq U$. Therefore $spc/A \cup spc/B \subseteq U$. Since A is semi-closed, by Theorem 3.11, $spc/(A \cup B) \subseteq U$. Hence $A \cup B$ is rps-closed.

Theorem 3.13

If a set A is rps-closed then, spc/A \setminus A does not contain a non empty rg-closed set.

Proof

Suppose that A is rps-closed. Let F be a rg-closed subset of spc/A \setminus A. Then

 $F \subseteq spclA \cap (X \setminus A) \subseteq X \setminus A$ and so $A \subseteq X \setminus F$. But A is rps-closed. Since $X \setminus F$ is rg-open,

 ${\it spc}{\it A}{\subseteq X \setminus F} \ \ {\it that implies} \quad {\it F} \subseteq X \setminus {\it spc}{\it A}. \ \ {\it As we have already} \quad {\it F}{\subseteq {\it spc}{\it A}, it follows that}$

 $F \subseteq spc/A \cap (X \setminus spc/A) = \emptyset$. Thus $F = \emptyset$. Therefore $spc/A \setminus A$ does not contain a non empty rg-closed set .

Theorem 3.14

Let A be rps-closed. Then A is semi-pre-closed if and only if spc/A \setminus A is rg-closed.

Proof

If A is semi-pre-closed then spcl(A) = A and so $spclA \setminus A = \emptyset$ which is rg-closed.

Conversely, suppose that $spc/A \setminus A$ is rg-closed. Since A is rps-closed,

by Theorem 3.13, spc/A \setminus A = Ø. That is spc/A = A and hence A is semi-pre-closed.

Theorem 3.15

If A is rps-closed and if $A \subseteq B \subseteq spclA$ then

(i) B is rps-closed

(ii) $spc/B \setminus B$ contains no non empty rg-closed set.

Proof

 $A \subseteq B \subseteq spc/A \implies spc/B = spc/A$. Now suppose $B \subseteq U$ and U is rg-open. Since A is rps-closed and since $A \subseteq B \subseteq U$, $spc/A \subseteq U$ that implies $spc/B \subseteq U$. This proves (i). Since B is rps-closed, (ii) follows from Theorem 3.13.

Theorem 3.16

For every point x of a space X, X \setminus {x} is rps-closed or rg-open.

Proof

 $\label{eq:suppose X \ } x \ is not rg-open . Then X is the only rg-open set containing X \ \{x\}. This implies \textit{spcl}(X \ \{x\}) \subseteq X.$

Hence X $\{x\}$ is rps-closed set in X.

Theorem 3.17

Suppose A is rg-open and A is rps-closed. Then A is semi-pre-closed.

Proof

Since A is rg-open and since A is rps-closed ,A \subseteq A \Rightarrow spc/A \subseteq A. This proves the theorem.

Theorem 3.18

Let A be rps-closed and cl int A be open. Then A is pgpr-closed.

Proof

Let A \subseteq U and U be rg-open. Since A is rps-closed, spc/A \subseteq U . By Lemma 2.5 (iii)

A \cup int cl intA \subseteq U that implies A \cup cl intA \subseteq U . Applying Lemma 2.5 (ii) pclA \subseteq U.

Therefore A is pgpr-closed.

Corollary 3.19

In an extremally disconnected space X, every rps-closed set is pgpr-closed.

Proof

In an extremally disconnected space X, *cl int*A is open for every subset A of X. Then the Corollary follows directly from Theorem 3.18.

Diagram 1

References

[1] Andrijevic D (1986) Semi-preopen sets. Mat Vesnik 38: 24-32.

[2] Anitha M and P Thangavelu (2005) On Pre-Generalized Pre-Regular-Closed sets. Acta Ciencia Indica 31M (4): 1035-1040.

[3] Arya S and T Nour(1990) Characterizations of s-normal spaces. Indian J. Pure Appl. Math 21: 717-719.

[4] Dontchev J (1995) On generalizing semi-pre-open sets. Mem Fac Sci Kochi Univ Ser A Math. 16: 35-48.

[5] Dontchev J and T Noiri (2000) Quasi-normal spaces and Π g-closed sets. Acta Math. Hungar 89 (3): 211-219.

[6] Gnanambal Y(1997) On generalized pre regular closed sets in topological spaces. *Indian J. Pure Appl. Math.* 28 (3): 351-360.

[7] Janaki C (1999) Studies on $\pi g \alpha$ -closed sets in topology. Ph.d Thesis. Bharathiar university Coimbatore, India.

[8] Levine N (1963) Semi-open sets and semi continuity in topological spaces. Amer. Math. Monthly 70: 36-41.

[9] Levine N (1970) Generalized closed sets in topology. Rend. Circ. Mat. Palermo 19 (2): 89-96.

[10] Maki H, R Devi and K Balachandran (1994) Associated topologies of generalized α -closed Sets and α - generalized closed sets. Mem. Fac. Sci. Kochi Univ. (Math) 15: 51-63.

[11] Maki H, J Umehara and T Noiri (1996) Every topological space is pre-T½. Mem Fac Sci Kochi Univ Ser.A, Math17: 33-42.

[12] Mashhour AS, ME Abd El-Monsef and SN El-Deeb (1982) On precontinuous and weak Precontinuous functions.Proc. Math. Phys. Soc. Egypt 53: 47-53.

[13] Nagaveni N (1999) Studies on generalizations of homeomorphisms in topological spaces. Ph.D Thesis.

Bharathiar University, Coimbatore, India.

[14] Njastad O (1965) On some classes of nearly open sets. Pacific J. Math.15: 961-970.

[15] Palaniappan N and KC Rao (1993) Regular generalized closed sets. Kyungpook Math. J 33: 211-219.

[16] Sarsak MS and N Rajesh (2010) π -Generalized semi-pre-closed sets. International Mathematical Forum 5(12): 573-578.

[17] Stone M (1937) Application of the theory of Boolean rings to general topology. *Trans. Amer. Math.* Soc 41: 374-481.

[18] Thangavelu P and KC Rao (2002) p-sets in topological spaces. Bulletin of Pure and Applied Sciences 21E (2): 341-355.

[19] Vadivel A and K Vairamanickam (2009) rgα-closed sets and rgα-open sets in topological Spaces. Int J Math Analysis 3 (37): 1803-1819.

[20] Veerakumar MKRS (2002) Pre-semi-closed sets. Indian J. Math 44 (2): 165-181.

[21] Willard S (1970) General Topology. Addison Wesley.

[22] Zaitsav V(1968) On certain classes of topological spaces and their bicompactifications. Dokl. Akad. Nauk SSSR 178: 778-779.