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Abstract 

 

This paper is an extension of a recent work done by the author [4] and here the sums of 

alternating series of odd powers (up to fifteen) of the reciprocals of odd positive integers are 

computed.  Following this method, the sum of the series of any higher power could be 

calculated.  In the process of computing these sums, the sums of the series of even powers of 

reciprocals of odd positive integers   have been reestablished and enabled the author to 

compute the values of Riemann’s zeta function for even positive integers. 
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To establish the claims of this paper, the author has developed the results summarized as the following lemmas, 
theorems and corollaries. 
 
Lemma 1.1. 
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Proof: Replacing x  by 
2x  in the geometric series 
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Integrating both sides of (3) from 0 to ,1||, zz one gets  
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The substitution of  ,0,   iez  in (4) (by Abel’s Limit Theorem [5]) gives                                                                
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The argument of the logarithmic function on the right side of (5) can be simplified as  
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The equation (7) provides the relation ;
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 i  but )arg(|)ln(|)ln( zizz   [7]; hence, one can 

write 
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Now equating the imaginary parts from (6) and (8) one can get the desired result. 
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This relation is crucial for the present work and will be used extensively. 

Theorem 1.1. For ,1k one has  
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.,,,,1 12222212 numbersrationalarebbaakiforwhere ikkikk   

Note: The above rational numbers are not fixed constants; each of them is a function of the index ,k and the 

symbol 0a , for example, will have different values for different values of k (
8

1
0 a for 1k and 

96

1
0 a  for 

2k etc.). 

Proof:  Mathematical Induction will be used to prove the theorem. For ,1k first the statement of the Theorem 1.1 is 

true with  
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The rational numbers 
1a and 0a are calculated by integrating the expression in Lemma 1.1., and by using 

.2/   

It is assumed that it is true for ,rk  where r is a positive integer. That is, 
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The proof would be over if one could show that the statement is true for ,1 rk that is, 
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Integration of (12) with respect to (w. r. t.)   gives 
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Substitution of 0 shows that ,01 C which turns (14) into 
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Integration of (15) with respect to   produces the equation  
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Substituting 0 in (16), one can show that 
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C   by repeated integration of (9).  

Then (16) becomes 
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Combining the first term of the right side of (17) with the summation term and writing 
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This establishes the first part of Theorem 1.1. Following the same technique as in the proof of the first part of Theorem 

1.1., one can prove the second part of it. 

Corollary 1.1. For ,1k one has  
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One can easily prove Corollary 1.1 by substituting 0  and ,
2


  respectively, in the first and second part of 

Theorem 1.1, and using Lemma 1.1. 

Using the second equation of Corollary 1.1., and Lemma 1.1., results in the following: 
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Equation (19) is known as the Leibniz Formula for   [8] and the relation (20) was produced by Euler in 1774 [1, 3, 

6]. 

Continuing the above process, one can compute the sum of the series of any power of the reciprocals of odd positive 

integers. However, as the exponents get larger and larger, the sum gets closer and closer to 1. One can see it from 

(26), where the exponent is only 15; the sum is approximately equal to 0.9999999303, which is close to 1 and for 

this reason, the author will stop here. 

As a byproduct of this work, knowing the values of the sum of the series of the even powers of the reciprocals of 

the odd positives integers from Corollary 1.1., one can easily compute the values of Riemann’s zeta function [2] at 

even positive integers. To this end, one needs the following results written as lemma and corollary. 

Lemma 1.2. Riemann’s zeta function  
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Note that the first series on the right side is a geometric series with common ratio .
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Corollary 1.2.  
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Replacing n by 2n in Lemma 1.2., and using the first part of Corollary 1.1., one can prove Corollary 1.2. 

Using Corollary 1.2., one can compute the values of Riemann’s zeta function at even positive integers as illustrated in 

the following examples: 
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