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Abstract

It was proved by Galois that there are no formulas that can be
used to solve “by radicals” general equations of degree 5 or
larger. In this paper we solved the general pentagonal equation
under certain conditions. We used the “Quartic Formula” and
uvnipodal numbers respectively for condition 1 and conditions 2
to solve the general pentagonal equation. The unipodal case
was elaborated with a detailed example.
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1. Introduction

Mathematicians tried over the ages to have formulas to solve polynomial equations. The fruits of
their efforts are the Quadratic Formula, and formulas to solve the general cubic equation known
as the “Cubic Formula” (Procissi, 1951) and the general quartic equation known as the “Quartic
Formula” (Candido, 1941). There are no formulae so far for solving general polynomial equations
of degree five or higher. The French mathematician Evariste Galois (Infeld, 1978) proved that
there are no formulae for solving general equations of degree 5 or higher. In order to solve the
cubic and quartic equations, first of all, the given general equation is transformed into reduced
form, and then either Cubic/Quartic Formula or unipodal numbers (Hestenes et al.,1991, Sobczyk,
1995) are used to get the solutions. For pentagonal equation, we used the Quartic Formula and
the unipodal numbers.

In section 2, we gave an overview of unipodal numbers. We solved pentagonal equation with an
example in section 3 and the references cited were in the section 4.

2. The Unipodal Number System

A unipodal number Win the standard basis{l, U}has the form W=W, +Uw,,where U’ =1lbut

U=+l and W,, W, are complex numbers. The basis {U,, U_} defined by

1 -~ 1
u, == €+u_and u_ == €-u, 1
. 2( _and U_ 2( (1)

and satisfies U, +U_=1and U, —U_ =U,is known as the idempotent basis, because

U+2 =Uu, and U_®> =u_.One other property of {u,, u_}is that they mutually annihilating, i.e.,

u,u_ =0.Using the idempotent basis, we can write
W=w(U, +U_)=W,U, +W U_,where W, =W, +W,and W_ =W, —W,. (2)

We can also recover the coordinates of the standard basis by

1 ~
Wy =—@Q, +W__ and w, ==, -w__.
2 2
(3)
It is noted that the idempotent basis makes calculation simple and the binomial theorem under this
basis becomes extremely simple as we see below:

™ m m M ™
QV+U+ +tWu_ = (V+ /u+n + (V—/u—n = (V‘F U+ (V—/u—
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(4)

The relation defined in (4) is valid for any real n. Because of (4) we can extend the definitions of
all of the elementary functions in the complex plane to the elementary functions in the unipodal

plane. If f(w)is such a function for w=w, U, +W_U_, we define

f(w)=f(w)u, +f(w )u
(5)

provided that f(w,) and f(W_)are defined. The basic unipodal equation W" = r can easily be
solved using the idempotent basis, with the help of equation (10). Writing W=w, U, +W_U_and
r=r.u, +r.u_,we have

n n n
w'=w,"u, +w_"u_=ru, +ru_,
(6)

|1/n |1/a

So w,"=r, and W." =1_. It follows that W, =|r,_ ['" a'and W, =|r_["* a"for some integers

0< j, k<n-1 where ais a primitive nth root of unity.

This proves the following theorem.

Theorem 1. For any positive integer N, the unipodal equation W" = has n? solutions
w=a'r""u, +a*r " u_

for j,k=0,1,...,n=1 where o =exp(2z/n).

The number of roots to the equation W" =T can be reduced by adding constraints. The following

corollary follows immediately from the theorem, by noting that W W= p#0, is equivalent to

W =plw,.

Corollary 1.The unipodal equation W" =T, subject to the constraint W, W_ = p, for a nonzero
complex number p, has the N solutions

w=alru +—L

jp 1/n
a’r,

J=0,1,...,n-1 where a=exp(2/n),and r+1/ndenotes any nth root of the complex number

r

+
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3. Solutions to Pentagonal Equation

Let us consider the general pentagonal equation

ax’ +5bx*+cx®* +dx*+ex+f =0. (a=0) (7)

b
By substitution of X =Y ——in (7), we obtain
a

5 4 3 2
a(y—gj +5b(y—§j +c(y—gj +d (y—g] +e(y—g)+f =0. (8)

Expanding and simplifying we obtain the reduced pentagonal equation

s [—10a°b*+a‘c) , (20a’b®-3a’bc) ,
ay®+ e y?+ i y

4 4

(—15ab4 +3a?b%c—2a°hd +a4ej (4b5 +a’b’d —ab’c—a’be+a’f J
+ y+ =0.
a a

(9)

From equation (9), we observe that if the constant term

4b° +a’b%d —ab’c—a’be+a‘f
a’ =0,
(10)

which we call the first condition, the reduced pentagonal equation takes the form

Ay® +By® +Cy? + Dy =0,
(11)

that can be factored as Y(Ay* +By? + Cy + D) =0, and it provides us with either y =0 or

Ay* + By’ +Cy+D =0,
(12)

that is a quartic equation and can be solved by using the Quartic Formula.

If we impose condition that the coefficient of the quadratic term in equation (9) is zero, i.e.
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213 aa3
(ZOa b"~3a bc]:o:»zobz—sac:o
a
(13)

which we call the second condition, the equation (?) terns into the form

Ay® +By*+Cy+D=0,
(14)

that is a reduced pentagonal equation of having odd powers of Y. We solve the equation of the

type in (14) by using the unipodal numbers.

Theorem 2. The reduced pentagonal equation X° +5ax® +bXx+c=0 has the solutions, for
j=01 17 21 31 41

(15)

where «a =exp(27/5)is a primitive 5" root of unity,p=—4a, b= % p?, s=-16¢c, and

t=4/s?—p° =16v/c’ —4a’.

Proof. The unipodal equation W° =r, where r=S+Ut,is equivalent in the standard basis to
(x+yu)® =s+tu, or (X>+10x>y? +5xy*)+(5x*y+10x’y® + y°)u =s+ut.Equating  the

complex scalar parts we have

x° +10x°y? +5xy* —s =0.
(16)

=16x° —10x3(x* —y?) +5x(y* —x*)(y? —x* +2x*)—s =0.
(17)

Now substituting X* —y? = pin (17), we obtain

=16x> —10p x> +5X(-p)(-p +2x*)—s =0.
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1 5 1
=X +5[ = | px®+| = | p?x——5=0.
( 4)’) (16)" 16

(18)
The constraint W, W_ = p further implies that

5 5 5
pP=@wW S =w"w’=rr =s"-t*

which gives t=+/s*> —p°. By letting p=— 4a, DZ%pzond s=-16¢c, so t=16/c*—4a’,

equation (18) becomes the reduced pentagonal equation X’ +5ax®+bx+c=0. Since
r, =S+t,the desired solution (15) is obtained by taking the complex scalar part of the solution

given in the Corollary 1, using (3).

Example 1. Find the solution of the reduced pentagonal equation x°> —10x* +20x +4 =0.
Solution. Here a=-2, b=30,c=4, p=8, s=-16c=-64,and t = 64+/7i. Then

S+t = —64+64/7i = 64(—1++/7) = 22 exp(0.61571) and it implies /s +t =232 exp(0.12371).
Using equation (21), we can write

8
2% % exp(0.123 7i) !

X =% 2% exp(0.123 zi) ! +

= 2V% {xp(0.1237i) ' +exp(—0.1237i) T, for j=0,1,2,3,4,

. For j=0, x=2"7 Jxp(0.123 7i)+exp(~-0.1237i) =2"? Pcos(0.1237) = 2.619875175 .
Il. Forj=1,
x = 22 xp(0.123 7ri) exp(27i / 5)+ exp(~0.123 7i)exp(—27i 1 5)
=22 xp((0.123 + 2/ 5) i) + exp(—(0.123 + 2/ 5) i =2"2 fcos(0.123+2/5)x_

=-0.204194823 .

lll. Forj=2,

x = 2"'2 xp(0.123 7ri) exp(47i / 5)+ exp(-0.123 7i )exp(—4i / 5)
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= 212 |xp((0.123+ 4/ 5) i) +exp(—(0.123 + 4/ 5) i =2"? Pcos(0.123+4/5) 7
= 2746074516

IV. For =3,
x = 22 [fxp(0.123 7ri) exp(67i / 5)+ exp(—-0.123 i )exp(—67i /5)

= 2" xp((0.123 +6/5) i) +exp(—(0.123 + 6/ 5) i =2"? pcos(0.123+6/5)7_
= —1.4929955855 .

V. For =4,
x = 22 xp(0.123 7i) exp(877i / 5)+exp(-0.123 i )exp(~87i /5)

=22 Ixp((0.123 +8/5)7i) +exp(—(0.123 +8/5)xi =2"? Pcos(0.123+8/5)7_

=1.823366727 .
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