# $\Lambda_r$ -homeomorphisms and $\Lambda_r^*$ -homeomorphisms

M.J. Jeyanthi<sup>1</sup>, S. Pious Missier<sup>2</sup> and P. Thangavelu<sup>1</sup>

<sup>1</sup> Research Department of Mathematics, Aditanar College of Arts and Science, Tiruchendur-628 216 (T.N.), India; <sup>2</sup> Post Graduate and Research Department of Mathematics, V.O. Chidambaram College, Thoothukudi-628 008 (T.N.), India. Email: jeyanthimanickaraj@gmail.com

Received: January 8, 2011 / Accepted: March 23, 2011

# Abstract

In this paper, the concepts of  $\Lambda_r$ -homeomorphisms and  $\Lambda_r^*$ -homeomorphisms are introduced and their basic properties are investigated. In particular, it has been shown that  $\Lambda_r^*$ -homeomorphisms form a group under composition. Key words:  $\Lambda_r$ -open,  $\Lambda_r$ -homeomorphism and  $\Lambda_r^*$ -homeomorphism.

MSC 2010: 54C10, 54C08, 54C05

#### 1. Introduction

The notion of homeomorphisms plays a dominant role in topology and so many authors introduced varies types of homeomorphisms in topological spaces. In 1995, Maki, Devi and Balachandran [2] introduced the concepts of semi-generalized homeomorphisms and generalized semi-homeomorphisms and studied some semi topological properties. Devi and Balachandran [1] introduced a generalization of  $\alpha$ -homeomorphism in 2001. Recently, Devi, Vigneshwaran, Vadivel and Vairamanickam [3,6] introduced g<sup>\*</sup> $\alpha$ c-homeomorphisms and rg $\alpha$ homeomorphisms and obtained some topological properties. The purpose of this paper is to introduce the concepts of homeomorphisms by using  $\Lambda_r$ -open sets. The authors [4] have recently introduced and studied  $\Lambda_r$ -sets,  $\Lambda_r$ -open sets,  $\Lambda_r$ -regular spaces and  $\Lambda_r$ -normal spaces. In this paper, we introduce the concepts  $\Lambda_r$ -homeomorphisms and  $\Lambda_r^*$ -homeomorphisms and investigate their basic properties. The most important property is that the set of all  $\Lambda_r^*$ homeomorphisms is a group under composition of functions.

Throughout the paper,  $(X, \tau)$  (or simply X) will always denote a topological space. For a subset S of a topological space X, S is called regular-open [5] if S = Int cl S. The complement  $S^c = X \setminus S$  of a regular-open set S is called the regular-closed set. The family of all regular-open sets (resp. regular-closed sets) in  $(X, \tau)$  will be denoted by  $RO(X, \tau)$  (resp.  $RC(X, \tau)$ ). A subset S of a topological space  $(X, \tau)$  is called a  $\Lambda_r$ -set [4] if  $S = \Lambda_r(S)$  where  $\Lambda_r(S) = \bigcap \{G : G \in RO(X, \tau) \text{ and } S \subseteq G \}$ . The collection of all  $\Lambda_r$ -sets in  $(X, \tau)$  is denoted by  $\Lambda_r(X, \tau)$ .

# 2. Preliminaries

Throughout this paper, we adopt the notations and terminology of [4]. Let A be a subset of a space (X,  $\tau$ ). Then A is called a  $\Lambda_r$ -closed set if A = S $\cap$ C where S is a  $\Lambda_r$ -set and C is a closed set. The complement of a  $\Lambda_r$ -closed set is called  $\Lambda_r$ -open. The collection of all  $\Lambda_r$ -open (resp.  $\Lambda_r$ -closed) sets in (X,  $\tau$ ) is denoted by  $\Lambda_rO(X, \tau)$  (resp.  $\Lambda_rC(X, \tau)$ ). We note that every open set is  $\Lambda_r$ -open; arbitrary union of  $\Lambda_r$ -open sets is  $\Lambda_r$ -open and arbitrary intersection of  $\Lambda_r$ -closed sets is  $\Lambda_r$ -closed. A point  $x \in X$  is called a  $\Lambda_r$ -cluster point of A if for every  $\Lambda_r$ -open set U containing x,  $A \cap U \neq \emptyset$ . The set of all  $\Lambda_r$ -cluster points of A is called the  $\Lambda_r$ -closure of A and it is denoted by  $\Lambda_r$ -cl(A). Then  $\Lambda_r$ -cl(A) is the intersection of  $\Lambda_r$ -closed sets containing A and it is the smallest  $\Lambda_r$ -closed set containing A. Also A is  $\Lambda_r$ -closed if and only if  $A = \Lambda_r$ - cl(A). The union of  $\Lambda_r$ -open sets contained in A is called  $\Lambda_r$ -interior of A and it is denoted by  $\Lambda_r$ -int(A).

#### **Definition 2.1**

A function  $f:X\to Y$  is called

- (a)  $\Lambda_r$ -continuous if f<sup>-1</sup>(V) is a  $\Lambda_r$ -open set in X for each open set V in Y.
- (b)  $\Lambda_r$ -irresolute if f<sup>-1</sup>(V) is a  $\Lambda_r$ -open set in X for each  $\Lambda_r$ -open set V in Y.
- (c)  $\Lambda_r$ -open if the image of each open set in X is a  $\Lambda_r$ -open set in Y.
- (d)  $\Lambda_r$ -closed if the image of each closed set in X is a  $\Lambda_r$ -closed set in Y.

## Lemma 2.2

Let  $f : X \to Y$  be a function where X and Y are topological spaces. Then f is  $\Lambda_r$ continuous if and only if the inverse image of each closed set in Y is  $\Lambda_r$ -closed in X.

#### Lemma 2.3

A function  $f : X \to Y$  is  $\Lambda_r$ -irresolute if and only if  $f^{-1}(V)$  is a  $\Lambda_r$ -closed set in X for every  $\Lambda_r$ -closed set V in Y.

## 3. $\Lambda_r$ -homeomorphism and $\Lambda_r^*$ -homeomorphism

In this section, we introduce the concepts of  $\Lambda_r$ -homeomorphisms and  $\Lambda_r^*$ -homeomorphisms in topological spaces and we investigate the group structure of the set of all  $\Lambda_r^*$ -homeomorphisms.

# **Definition 3.1**

A bijection  $f : (X, \tau) \rightarrow (Y, \sigma)$  is called  $\Lambda_r$ -homeomorphism if both f and  $f^{-1}$  are  $\Lambda_r$ -continuous.

We denote the family of all  $\Lambda_r$ -homeomorphisms of a topological space (X,  $\tau$ ) onto itself by  $\Lambda_r H$  (X,  $\tau$ ).

#### Theorem 3.2

Every homeomorphism is a  $\Lambda_r$ -homeomorphism.

## Proof

Let  $f : (X, \tau) \rightarrow (Y, \sigma)$  be a homeomorphism. Then f is bijective and both f and f<sup>-1</sup> are continuous. Since every continuous function is  $\Lambda_r$ -continuous, f and f<sup>-1</sup> are  $\Lambda_r$ -continuous. This shows that f is a  $\Lambda_r$ -homeomorphism.

#### Remark 3.3

The converse of the above theorem need not be true, as shown in the following example.

# Example 3.4

Let  $X = Y = \{a,b,c\}, \quad \tau = \{X,\emptyset,\{a\},\{b\},\{a,b\},\{b,c\}\} \text{ and } \sigma = \{Y,\emptyset,\{b\},\{c\},\{b,c\}\}.$ Then  $\Lambda_rO(X,\tau) = \tau$  and  $\Lambda_rO(Y,\sigma) = \{Y,\emptyset,\{b\},\{c\},\{b,c\},\{a,c\},\{a,b\}\}.$ Let  $f : (X,\tau) \rightarrow (Y,\sigma)$  be defined by f(a) = c, f(b) = b and f(c) = a.

Then f is  $\Lambda_r$ -homeomorphism. Since f ({b, c}) = {a, b} is not open in (Y,  $\sigma$ ), f<sup>-1</sup> is not continuous that implies f is not a homeomorphism.

# Theorem 3.5

Let  $f : (X, \tau) \rightarrow (Y, \sigma)$  be a bijective  $\Lambda_r$ -continuous function. Then the following are equivalent:

(a) f is  $\Lambda_{\text{r}}\text{-}\text{open}$ 

- (b) f is  $\Lambda_{\rm r}\text{-homeomorphism}$
- (c) f is  $\Lambda_r$ -closed

# Proof

Suppose (a) holds. Let V be open in (X,  $\tau$ ). Then by (a), f (V) is  $\Lambda_r$ -open in (Y,  $\sigma$ ). But f (V) = (f <sup>-1</sup>)<sup>-1</sup>(V) and so (f <sup>-1</sup>)<sup>-1</sup>(V) is  $\Lambda_r$ -open in (Y,  $\sigma$ ). This shows that f <sup>-1</sup> is  $\Lambda_r$ -continuous and it proves (b).

Suppose (b) holds. Let F be a closed set in (X,  $\tau$ ). By (b), f<sup>-1</sup> is  $\Lambda_r$ -continuous and so (f<sup>-1</sup>)<sup>-1</sup>(F) = f (F) is  $\Lambda_r$ -closed in (Y,  $\sigma$ ). This proves (c).

Suppose (c) holds. Let V be open in  $(X, \tau)$ . Then V<sup>c</sup> is closed in  $(X, \tau)$ . By (c), f (V<sup>c</sup>) is  $\Lambda_r$ -closed in  $(Y, \sigma)$ . But f (V<sup>c</sup>) = (f (V))<sup>c</sup>. This implies that (f (V))<sup>c</sup> is  $\Lambda_r$ -closed in  $(Y, \sigma)$  and so f (V) is  $\Lambda_r$ -open in  $(Y, \sigma)$ . This proves (a).

# Remark 3.6

The composition of two  $\Lambda_r$ -homeomorphisms need not be  $\Lambda_r$ -homeomorphism, as shown in the following example.

# Example 3.7

Let  $X = Y = Z = \{a,b,c\}, \tau = \{X,\emptyset,\{a\},\{b\},\{a,b\},\{b,c\}\}, \sigma = \{Y,\emptyset,\{b\},\{c\},\{b,c\}\} \text{ and } \gamma = \{Z,\emptyset,\{a\},\{b\},\{a,b\},\{b,c\}\}.$  Then  $\Lambda_rO(X,\tau) = \tau, \Lambda_rO(Y,\sigma) = \{Y,\emptyset,\{b\},\{c\},\{b,c\},\{a,c\},\{a,b\}\}$  and  $\Lambda_rO(Z,\gamma) = \gamma$ . Define  $f : (X,\tau) \rightarrow (Y,\sigma)$  by f(a) = c, f(b) = b and f(c) = a and define  $g : (Y,\sigma) \rightarrow (Z,\gamma)$  by g(a) = c, g(b) = a and g(c) = b. Then f and g are  $\Lambda_r$ -homeomorphisms. Here  $g \circ f$  is not  $\Lambda_r$ -continuous since  $\{b,c\}$  is open in  $(Z,\gamma)$  but  $(g \circ f)^{-1}(\{b,c\}) = \{a,c\}$  is not  $\Lambda_r$ -open in  $(X,\tau)$  and so  $g \circ f$  is not  $\Lambda_r$ -homeomorphism.

# **Definition 3.8**

A bijection  $f : (X, \tau) \rightarrow (Y, \sigma)$  is said to be  $\Lambda_r^*$ -homeomorphism if both f and f <sup>-1</sup> are  $\Lambda_r$ -irresolute.

We say that spaces  $(X, \tau)$  and  $(Y, \sigma)$  are  $\Lambda_r^*$ -homeomorphic if there exists a  $\Lambda_r^*$ -homeomorphism from  $(X, \tau)$  onto  $(Y, \sigma)$ . We denote the family of all  $\Lambda_r^*$ -homeomorphisms of a topological space  $(X, \tau)$  onto itself by  $\Lambda_r^* H(X, \tau)$ .

# Theorem 3.9

Every  $\Lambda_r^*$ -homeomorphism is a  $\Lambda_r$ -homeomorphism.

# Proof

Let  $f : (X, \tau) \rightarrow (Y, \sigma)$  be a  $\Lambda_r^*$ -homeomorphism. Then f is bijective,  $\Lambda_r$ -irresolute and  $f^{-1}$  is  $\Lambda_r$ -irresolute. Since every  $\Lambda_r$ -irresolute function is  $\Lambda_r$ -continuous, f and  $f^{-1}$  are  $\Lambda_r$ -continuous and so f is a  $\Lambda_r$ -homeomorphism.

# Remark 3.10

The following example shows that the converse of the above theorem need not be true.

# Example 3.11

Let X, Y,  $\tau$ ,  $\sigma$  and f be defined as in Example 3.4. Then f is a  $\Lambda_r$ -homeomorphism but not a  $\Lambda_r^*$ -homeomorphism since {a, c} is  $\Lambda_r$ -open in (Y,  $\sigma$ ) but f  $^{-1}(\{a, c\}) = \{a, c\}$  is not  $\Lambda_r$ -open in (X,  $\tau$ ) and so f is not  $\Lambda_r$ -irresolute.

Examples can be constructed to show that the concepts of homeomorphisms and  $\Lambda_r^*\text{-homeomorphism}$  are independent.

# Remark 3.12

From the above discussions, we have the following implications.



where "A  $\longrightarrow$  B" means A implies B but not conversely and "A  $\checkmark$  B" means A and B are independent of each other.

# Theorem 3.13

If  $f : (X, \tau) \to (Y, \sigma)$  is a  $\Lambda_r^*$ -homeomorphism, then  $\Lambda_r$ -cl(f<sup>-1</sup>(B)) = f<sup>-1</sup>( $\Lambda_r$ -cl(B)) for every B  $\subseteq Y$ .

# Proof

Let  $f : (X, \tau) \to (Y, \sigma)$  be a  $\Lambda_r^*$ -homeomorphism. Then by Definition 3.8, both f and f<sup>-1</sup> are  $\Lambda_r$ -irresolute and f is bijective. Let  $B \subseteq Y$ . Since  $\Lambda_r$ -cl(B) is a  $\Lambda_r$ -closed set in  $(Y, \sigma)$ , using

Lemma 2.3, f  $^{-1}(\Lambda_r-cl(B))$  is  $\Lambda_r$ -closed in (X,  $\tau$ ). But  $\Lambda_r-cl(f - 1(B))$  is the smallest  $\Lambda_r$ -closed set containing f  $^{-1}(B)$ .

Therefore 
$$\Lambda_r$$
-cl(f<sup>-1</sup>(B))  $\subseteq$  f<sup>-1</sup>( $\Lambda_r$ -cl(B)).  $\rightarrow$  (1)

Again,  $\Lambda_r$ -cl(f<sup>-1</sup>(B)) is  $\Lambda_r$ -closed in (X, $\tau$ ). Since f<sup>-1</sup> is  $\Lambda_r$ -irresolute, f ( $\Lambda_r$ -cl(f<sup>-1</sup>(B))) is  $\Lambda_r$ -closed in (Y, $\sigma$ ). Now, B = f (f<sup>-1</sup>(B))  $\subseteq$  f ( $\Lambda_r$ -cl(f<sup>-1</sup>(B))). Since f ( $\Lambda_r$ -cl(f<sup>-1</sup>(B))) is  $\Lambda_r$ -closed and  $\Lambda_r$ -cl(B) is the smallest  $\Lambda_r$ -closed set containing B,  $\Lambda_r$ -cl(B)  $\subseteq$  f( $\Lambda_r$ -cl(f<sup>-1</sup>(B))) that implies f<sup>-1</sup>( $\Lambda_r$ -cl(B))  $\subseteq$  f<sup>-1</sup>(f( $\Lambda_r$ -cl(f<sup>-1</sup>(B)))) =  $\Lambda_r$ -cl(f<sup>-1</sup>(B)).

That is,  $f^{-1}(\Lambda_r - cl(B)) \subseteq \Lambda_r - cl(f^{-1}(B)) \longrightarrow (2)$ 

From (1) and (2),  $\Lambda_r$ -cl(f <sup>-1</sup>(B)) = f <sup>-1</sup>( $\Lambda_r$ -cl(B)).

## Corollary 3.14

If  $f : (X, \tau) \rightarrow (Y, \sigma)$  is a  $\Lambda_r^*$ -homeomorphism, then  $\Lambda_r$ -cl(f (B)) = f ( $\Lambda_r$ -cl(B)) for every  $B \subseteq X$ .

## Proof

Let  $f : (X, \tau) \to (Y, \sigma)$  be a  $\Lambda_r^*$ -homeomorphism. Since f is  $\Lambda_r^*$ -homeomorphism,  $f^{-1}$  is also a  $\Lambda_r^*$ -homeomorphism. Therefore by Theorem 3.13, it follows that  $\Lambda_r$ -cl(f (B)) = f ( $\Lambda_r$ -cl(B)) for every  $B \subseteq X$ .

## Corollary 3.15

If  $f : (X, \tau) \to (Y, \sigma)$  is a  $\Lambda_r^*$ -homeomorphism, then  $f (\Lambda_r-int(B)) = \Lambda_r-int(f (B))$  for every  $B \subseteq X$ .

# Proof

Let  $f: (X, \tau) \to (Y, \sigma)$  be a  $\Lambda_r^*$ -homeomorphism. For any set  $B \subseteq X$ ,  $\Lambda_r$ -int(B) =  $(\Lambda_r$ -cl(B<sup>c</sup>))<sup>c</sup>.

 $f(\Lambda_r-int(B)) = f((\Lambda_r-cl(B^c))^c) = (f(\Lambda_r-cl(B^c)))^c$ . Then using Corollary 3.14, we see that

 $f(\Lambda_r-int(B)) = (\Lambda_r-cl(f(B^c)))^c = \Lambda_r-int(f(B)).$ 

## Corollary 3.16

If  $f: (X, \tau) \to (Y, \sigma)$  is a  $\Lambda_r^*$ -homeomorphism, then for every  $B \subseteq Y$ ,

 $f^{-1}(\Lambda_r-int(B)) = \Lambda_r-int(f^{-1}(B)).$ 

## Proof

Let  $f : (X, \tau) \to (Y, \sigma)$  be a  $\Lambda_r^*$ -homeomorphism. Since f is  $\Lambda_r^*$ -homeomorphism,  $f^{-1}$  is also a  $\Lambda_r^*$ -homeomorphism. Therefore by Corollary 3.15,  $f^{-1}(\Lambda_r\text{-int}(B)) = \Lambda_r\text{-int}(f^{-1}(B))$  for every  $B \subseteq Y$ .

## Theorem 3.17

If  $f : (X, \tau) \to (Y, \sigma)$  and  $g : (Y, \sigma) \to (Z, \gamma)$  are  $\Lambda_r^*$ -homeomorphisms, then the composition  $g \circ f : (X, \tau) \to (Z, \gamma)$  is also  $\Lambda_r^*$ -homeomorphism.

# Proof

Let U be a  $\Lambda_r$ -open set in (Z,  $\gamma$ ). Since g is  $\Lambda_r^*$ -homeomorphism, g is  $\Lambda_r$ -irresolute and so g  $^{-1}(U)$  is  $\Lambda_r$ -open in (Y, $\sigma$ ). Since f is  $\Lambda_r^*$ -homeomorphism, f is  $\Lambda_r$ -irresolute and so f  $^{-1}(g ^{-1}(U)) = (g \circ f) ^{-1}(U)$  is  $\Lambda_r$ -open in (X, $\tau$ ). This implies that g  $\circ$  f is  $\Lambda_r$ -irresolute.

Again, let G be  $\Lambda_r$ -open in (X,  $\tau$ ). Since f is  $\Lambda_r^*$ -homeomorphism, f<sup>-1</sup> is  $\Lambda_r$ -irresolute and so (f<sup>-1</sup>)<sup>-1</sup>(G) = f (G) is  $\Lambda_r$ -open in (Y,  $\sigma$ ). Since g is  $\Lambda_r^*$ -homeomorphism, g<sup>-1</sup> is  $\Lambda_r$ -irresolute and so (g<sup>-1</sup>)<sup>-1</sup>(f (G)) = g (f (G)) = (g \circ f)(G) = ((g \circ f)^{-1})^{-1}(G) is  $\Lambda_r$ -open in (Z,  $\gamma$ ). This implies that (g  $\circ$  f)<sup>-1</sup> is  $\Lambda_r$ -irresolute. Since f and g are  $\Lambda_r^*$ -homeomorphism, f and g are bijective and so g  $\circ$  f is bijective. This completes the proof.

## Theorem 3.18

The set  $\Lambda_r^*H(X, \tau)$  is a group under composition of functions.

#### Proof

Let f, g  $\in \Lambda_r^*H(X, \tau)$ . Then f  $\circ$  g  $\in \Lambda_r^*H(X, \tau)$  by Theorem 3.17. Since f is bijective, f<sup>-1</sup>  $\in \Lambda_r^*H(X, \tau)$ . This completes the proof.

#### Theorem 3.19

If  $f : (X, \tau) \to (Y, \sigma)$  is a  $\Lambda_r^*$ -homeomorphism, then f induces an isomorphism from the group  $\Lambda_r^* H(X, \tau)$  onto the group  $\Lambda_r^* H(Y, \sigma)$ .

## Proof

Let  $f \in \Lambda_r^* H(X, \tau)$ . Then define a map  $\psi_f \colon \Lambda_r^* H(X, \tau) \to \Lambda_r^* H(Y, \sigma)$  by  $\psi_f(h) = f \circ h \circ f^{-1}$ 

for every  $h \in \Lambda_r^* H(X, \tau)$ . Let  $h_1, h_2 \in \Lambda_r^* H(X, \tau)$ .

Then  $\psi_{f}(h_{1} \circ h_{2}) = f \circ (h_{1} \circ h_{2}) \circ f^{-1}$ 

$$= \mathbf{f} \circ (\mathbf{h}_1 \circ \mathbf{f}^{-1} \circ \mathbf{f} \circ \mathbf{h}_2) \circ \mathbf{f}^{-1}$$
$$= (\mathbf{f} \circ \mathbf{h}_1 \circ \mathbf{f}^{-1}) \circ (\mathbf{f} \circ \mathbf{h}_2 \circ \mathbf{f}^{-1})$$
$$= \psi_{\mathbf{f}} (\mathbf{h}_1) \circ \psi_{\mathbf{f}} (\mathbf{h}_2).$$

Since  $\psi_{f}$  (f<sup>-1</sup>  $\circ$  h  $\circ$  f) = h,  $\psi_{f}$  is onto. Now,  $\psi_{f}$  (h) = I implies f  $\circ$  h  $\circ$  f<sup>-1</sup> = I. That implies h = I. This proves that  $\psi_{f}$  is one-one. This shows that  $\psi_{f}$  is a isomorphism.

## References

[1] Devi R and Balachandran K (2001) Some generalizations of  $\alpha$  -homeomorphisms in topological spaces. Indian J. Pure appl. Math., 32(4): 551-563.

[2] Devi R and Balachandran K and Maki H (1995) Semi-generalized homeomorphisms and

generalized semi-homeomorphisms in topological spaces . Indian J. Pure appl. Math., 26(3) : 271-284.

[3] Devi R and Vigneshwaran M (2010)  $*g\alpha$  c-homeomorphisms in topological spaces. International Journal of Computer Applications 3( 6) : 17-19.

[4] Pious Missier S, Thangavelu P and Jeyanthi M J (2010) On  $\Lambda_r$ -regular and  $\Lambda_r$ -normal spaces, International J. of Math. Sci. and Engg. Appls., 4(5) : 225-235.

[5] Stone M.H (1937) Applications of the theory of boolean rings to the general topology. Trans. A.M.S., 41 : 375-481.

[6] Vadivel A and Vairamanickam K (2010) rg  $\alpha$  -homeomorphisms in topological spaces. International Journal of Math. Analysis, 4(18) : 881-890.