On π -Quasi Irresolute Functions

C.Janaki¹ & Ganes M.Pandya²

¹L.R.G Government Arts College for Women, Tirupur-641604.India. E-Mail : janakicsekar@yahoo.com

²School Of Petroleum Management-PDPU Gujarat-382007. India. E-mail: ganes 17@yahoo.com

Abstract

In this paper we introduce a new class of functions called π -quasi irresolute functions. The notion of π -quasi graphs are introduced and the relationship between π -quasi irresolute functions and π -quasi closed graphs is analysed.

2000 Mathematics Subject Classification : 54C08, 54C10.

Received: February 7, 2011 / Accepted: March 23, 2011

1 Introduction

In 1970, Levine [1] initiated the study of g-closed sets. Over the years this notion has been studied extensively by many topologists. Zaitsev [15] introduced the concept of π -closed sets and defined a class of topological spaces called quasi normal spaces. J.Dontchev and T.Noiri[5] introduced the class of π g-closed sets and obtained a new characterization of quasi-normal spaces. Recently, new classes of functions called regular set-connected [4] have been introduced and investigated. Ekici [6] lextended the concept of regular set-connected functions to almost clopen functions. Saeid Jafari and Noiri [12] introduced α -quasi-irresolute functions and studied the relationships between α -quasiirresolute functions and graphs.

In this paper we introduce a new class of functions called π -quasi irresolute functions and its fundamental properties are explored. We introduce π -quasi-closed graphs and study the relationships between π -quasi irresolute functions and π -quasi-closed graphs.

2 Preliminaries

Throughout this paper (X,τ) and (Y,σ) represent topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X,τ) , cl(A), int(A) and A^c denote the closure of A, the interior of A and the complement of A in X respectively.

A subset A of a space X is called regular open [11] if A = int(cl (A)). The family of all regular open (resp regular closed, clopen, semi-open) sets of X is denoted by RO(X) (resp RC(X), CO(X), SO(X)). A finite union of regular open sets is called a π -open set. The family of all π -open sets of X

is denoted by $\pi O(X)$. The π -interior of A is the union of all π -open sets of X contained in A and it is denoted by π -int(A). The complement of a π -open set is called π -closed

A subset A is said to be semi-open[10] if $A \subset cl(int(A))$. A point x is said to be θ -semi cluster point if a subset A of X is such that $cl(U) \cap A \neq \phi$ for every $U \in SO(X,x)$. The set of all θ -semi cluster points of A is called a θ -semi closure of a set and it is denoted by θ -s-cl(A). A subset A is called θ -semi closed [8] if $A = \theta$ -scl(A). The complement of a θ -semi closed set is called θ -semi open. The union of all α -open sets contained in S is called the α -interior of S and is denoted by α -int(S). We set $\alpha(X,x) = \{U \mid x \in U \in \alpha(X)\}$

We recall the following definitions, which are useful in the sequel.

Definition 2.1. A Space X is said to be

- 1. πT_1 [7] if for each pair of distinct points x and y of X, there exist π -open sets U and V containing x and y respectively such that $y \notin U$ and $x \notin V$.
- 2. π -Lindelof [7] if every cover of X by π -open sets has a countable subcover.
- 3. S-closed [14] if every cover of X by semi-open sets of X admits a finite subfamily, whose closures cover X.
- 4. countably S-closed [3] if every countable cover of X by regular closed sets has a finite subcover.
- 5. S-Lindelof [2] if every cover of X by regular closed sets has a countable subcover.

Definition. 2.2. A function $f : X \to Y$ is said to be

- 1. θ irresolute [9] if for each $x \in X$ and each $V \in SO(Y, f(x))$, there exist $U \in SO(X, x)$ such that $f(cl(U)) \subset cl(V)$.
- 2. regular set-connected [4] if $f^{-1}(V)$ is clopen in X for every regular open set V of Y.
- 3. π -set connected [7] if $f^{-1}(V) \in CO(X)$ for every $V \in \pi O(Y)$.
- 4. (θ -s)-continuous [8] if for each $x \in X$ and each $V \in SO(Y, f(x))$, there exists an open set U in X containing x such that $f(U) \subset Cl(V)$.
- 5. α -quasi-irresolute [12](briefly α -q-i) if for each $x \in X$ and each $V \in SO(Y, f(x))$, there exists $U \in \alpha(X, x)$ such that $f(U) \subset CI(V)$.
- Remark 2.2. It should be noted that the following implications hold : [12] regular set-connected $\Rightarrow(\theta, s)$ -continuous $\Rightarrow \alpha$ -quasi irresolute.

3 π -Quasi-irresolute functions

Definition 3.1. A function $f: X \to Y$ is called π -Quasi-irresolute if for each $x \in X$ and each $V \in SO(Y, f(x))$ there exist a π -open set U in X containing x such that $f(U) \subset cl(V)$.

Remark 3.2. The following implications can be easily established π -Quasi irresolute $\Rightarrow (\theta, s)$ -continuous.

Theorem 3.3. Suppose that $\pi O(X)$ is closed under arbitrary union, then the following are equivalent for a function $f: X \to Y$

- 1. f is π quasi -irresolute.
- 2. $f^{-1}(V) \subset \pi int (f^{-1}(cl(V)))$ for every $V \in SO(Y)$.

- 3. The inverse image of a regular closed set of Y is π -open.
- 4. The inverse image of a regular open set of Y is π -closed.
- 5. The inverse image of a θ -semi open set of Y is π -open.
- 6. $f^{-1}(int(cl(G)))$ is π -closed. for every open subset G of Y.
- 7. $f^{-1}(cl (int(F)))$ is π -open for every closed subset F of Y.

Proof. $(1) \Rightarrow (2)$: Let $V \in SO(Y)$ and $x \in f^{-1}(V)$. Then $f(x) \in V$. Since f is π -quasi irresolute, there exist a π -open set U in X containing x such that $f(U) \subset cl(V)$. It follows that $x \in U \subset f^{-1}(cl(V))$. Hence $x \in \pi$ int $(f^{-1}(cl(V)))$. Therefore $f^{-1}(V) \subset \pi$ -int $(f^{-1}(cl(V)))$.

 $(2) \Rightarrow (3)$: Let F be any regular closed set of Y. Since $F \in SO(Y)$, then by (2), $f^{-1}(F) \subset \pi$ int($f^{-1}(F)$). This shows that $f^{-1}(F)$ is π -open.

 $(3) \Leftrightarrow (4)$: is obvious.

 $(4) \Rightarrow (5)$: This follows from our assumption and the fact that any θ -semi open set is a union of regular closed sets.

 $(5) \Rightarrow (1)$. Let $x \in X$ and $V \in SO(Y)$. Since cl (V) is θ -semi open in Y by (5) there exist a π -open set U in X containing x such that $x \in U \subset (f^{-1}(cl(V)))$. Hence f (U) \subset cl (V). Hence f is π -quasi irresolute

 $(4) \Rightarrow (6)$ let G be a open subset of Y. Since int(cl (G)) is regular open, then by (4), f⁻¹(int (cl (G))) is π - closed

- $(6) \Rightarrow (4)$ is obvious.
- $(3) \Rightarrow (7)$ is similar as $(4) \Leftrightarrow (6)$.

Definition 3.4. A Space X is said to be

- 1. π -compact if every cover of X by π -open sets has a finite subcover.
- 2. countably π -compact if every countable cover of X by π -open sets has a finite subcover.
- 3. π -Hausdroff (π T₂) if for each pair of distinct points x and y in X , there exist U $\in \pi$ O(X,x) and V $\in \pi$ O(Y,y) such that U \cap V = ϕ .
- Remark 3.5. Here it should be noted that following implications hold: π -Hausdroff space \Rightarrow Hausdorff space .

Lemma 3.6. Let S be an open subset of a space (X, τ) then If U is π -open in X, then so is $U \cap S$ in the subspace (S, τ_s)

Theorem 3.7. If $f: X \to Y$ is a π -quasi-irresolute function and A is any open subset of X, then the restriction $f / A : A \to Y$ is π -quasi irresolute function.

Proof. Let $F \in RC$ (Y). Then by theorem 3.3, $f^{-1}(F) \in \pi O(X)$. Since A is any open set in X, $(f / A)^{-1}(F) = f^{-1}(F) \cap A \in \pi O(A)$. Therefore f / A is π -quasi irresolute function.

Definition 3.8. A space X is said to be

- 1. S-Urysohn [1] if for each pair of distinct points x and y in X , there exist $U \in SO(X,x)$ and $V \in SO(X,Y)$ such that cl $(U) \cap cl (V) = \phi$.
- 2. Weakly Hausdorff [13] if each element of X is an intersection of regular closed sets.

Theorem 3.9. If $f: X \rightarrow Y$ is π -quasi irresolute injection and Y is S-Urysohn, then X is π -Hausdorff.

Proof. Suppose that Y is S-Urysohn. By the injectivity of f, it follows that $f(x) \neq f(y)$ for any distinct points x and y in X. Since Y is S-Urysohn, there exist $V \in SO(Y, f(x))$ and $W \in SO(Y, f(y))$ such that $cl(V) \cap cl(W) = \phi$. Since f is a π -quasi irresolute function, there exist π -open sets U and G in X containing x and y respectively, such that $f(U) \subset cl(V)$ and $f(G) \subset cl(W)$ and we have $U \cap G = \phi$. Hence X is π -Hausdorff.

Theorem 3.10. If $f: X \to Y$ is π -quasi irresolute injection and Y is weakly Hausdorff then X is πT_1 .

Proof. Suppose that Y is weakly Hausdorff. For any distinct points x and y there exist V, $W \in RC$ (Y) such that $f(x) \in V$ and $f(y) \notin V$, $f(x) \notin W$ and $, f(y) \in W$. Since f is π -quasi irresolute injection, by theorem 3.2, $f^{-1}(V)$ and $f^{-1}(W)$ are π -open subsets of X such that $x \in f^{-1}(V)$, $x \notin f^{-1}(W)$ and $y \in f^{-1}(W)$. This shows that X is πT_1 .

Theorem 3.11. If f, $g : X \to Y$ are π -quasi irresolute functions and Y is S-Urysohn, then $E = \{x \in X \neq f(x) = g(x)\}$ is closed in X.

Proof. If $x \in X - E$. Then $f(x) \neq g(x)$.Since Y is S-Urysohn, there exist $V \in SO$ (Y, f(x)) and W $\in SO$ (Y,g(x)) such that $cl(V) \cap cl(W) = \phi$. Since f and g are π -quasi irresolute, there exist π -open sets U and G, which are open sets in X such that $f(U) \subset cl(V)$ and $g(G) \subset cl(W)$. Set $O = U \cap G$. Then O is open in X.

 $f(O) \cap g(O) = f(U \cap G) \cap g(U \cap G) \subset f(U) \cap g(G) \subset cl(V) \cap cl(W) = \phi. O is an open set and O \cap E = \phi$. Therefore $x \notin cl(E)$. E is closed in X.

Theorem 3.12. Let $f: X \to Y$ be a function and $g: X \to X \times Y$ the graph function of f defined by g(x) = (x, f(x)) for every $x \in X$. If g is π -quasi irresolute, then f is π -quasi irresolute.

Proof. Let $F \in RC(Y)$, then $X \times F = X \times cl$ (int(F)) = cl $(int(X) \times cl(int(F)) = cl$ $(int (X \times F))$. Therefore $X \times F \in RC$ $(X \times Y)$. It follows from theorem 3.3, that $f^{-1}(F) = g^{-1}(X \times F)$ is π -open in X. Thus f is π -quasi-irresolute.

Definition 3.13. A function $f: X \to Y$ is said to be

- 1. π -open if the image of each π -open set is π -open.
- 2. π -irresolute if for each $x \in X$ and π -open set V in Y ,containing f(x), there exist a π -open set U in X ,containing x, such that $f(U) \subset V$.

Theorem 3.14. Let $f: X \to Y$ and $g: X \to Y$ be functions. Then the following hold :

- 1. If f is π -irresolute and g is π -quasi irresolute then $g \circ f : X \to Z$ is π -quasi irresolute.
- 2. If f is π -quasi irresolute and g is θ -irresolute, then $g \circ f : X \to Z$ is π -quasi irresolute.

Proof. 1) Let $x \in V$ and W be a semi-open set in Z containing (gof)(x). since g is π -quasi irresolute, there exist a π -open set V in Y containing f(x) such that g(V) \subset cl(W). Since f is π - irresolute, there exist π -open set U in X such that f(U) \subset V.

This shows that $(g \circ f)(U) \subset cl$ (W). Therefore $g \circ f$ is π -quasi irresolute.

2) Let $x \in X$ and W be a semi-open set in Z containing gof (x). Since g is θ -irresolute, there exist $V \in SO(Y, f(x))$ such that $g(cl(V)) \subset cl(W)$. Since f is π -quasi irresolute there exist a π -open set U(X,x) such that $f(U) \subset cl(V)$. Therefore, we have $(g \circ f)(U) \subset cl(W)$. This shows that $(g \circ f)$ is π -quasi irresolute.

Theorem 3.15. If $f: X \to Y$ is a π -open surjective function and $g: Y \to Z$ is a function such that $g \circ f: X \to Z$ is π -quasi irresolute, then g is π -quasi irresolute.

Proof. Suppose that x and y are in X and Y respectively such that f(x) = y. Let W be a semi-open set in Z containing gof (x). Then there exist $U \in \pi O(X, x)$ such that $g(f(U)) \subset cl(W)$. Since f is π -open, then $f(U) \in \pi O(Y, y)$ such that $g(f(U)) \subset cl(W)$. This implies that g is π -quasi irresolute. \Box

4 π -quasi-closed graph

Definition 4.1. The graph G(f) of a function $f : X \to Y$ is said to be π -quasi-closed if for each $(x,y) \in X \times Y - G(f)$, there exist $U \in \pi O(X, x)$ and $V \in SO(Y,y)$ such that $(U \times cl(V)) \cap G(f) = \phi$.

Lemma 4.2. The following properties are equivalent for a graph G(f) of a function $f: X \to Y$.

- 1. The graph G (f) is π -quasi-closed in X×Y.
- 2. For each point (x,y) $\in X \times Y$ G(f) , there exist $U \in \pi O(X,x)$ and $V \in SO(Y,y)$ such that $f(U) \cap cl(V) = \phi$.
- 3. For each point $(x,y) \in X \times Y$ G(f), there exist $U \in \pi O(X,x)$ and $F \in RC(Y,y)$ such that f(U) $\cap F = \phi$.

Proof. (1) \Rightarrow (2) follows from the definition and the fact that for any subset $A \subset X$, $B \subset Y (A \times B) \cap G(f) = \phi$ iff $f(A) \cap B = \phi$.

 $(2) \Rightarrow (3)$ follows from the fact that cl(V) $\in RC(Y)$ for any V $\in SO(Y)$.

 $(3) \Rightarrow (1)$. It is obvious since every regular closed set is semi-open and closed.

Theorem 4.3. If $f: X \to Y$ is π -quasi-irresolute and Y is S-Urysohn, then G(f) is π -quasi-closed in $X \times Y$.

Proof. Let (x,y) ∈X×Y - G(f). It follows that $f(x) \neq y$. Since Y is S-Urysohn, there exist V ∈ SO(Y,f(x)) and W ∈ SO(Y,y) such that $cl(V) \cap cl(W) = \phi$. Since f is π-quasi-irresolute, there exist π-open set U(X,x) such that f(U) ⊂ cl(V). Therefore, $f(U) \cap cl(W) ⊂ cl(V) \cap cl(W) = \phi$. and G(f) is π-quasi-closed in X ×Y.

Theorem 4.4. If $f: X \to Y$ is surjective and G(f) is π -quasi-closed then Y is weakly Hausdorff.

Proof. Let y_1 and y_2 be any distinct points of Y. Since f is surjective $f(x) = y_1$ for some $x \in X$ and $(x, y_2) \in X \times Y - G(f)$. By lemma 4.2, there exist $U \in \pi O(X, x)$ and $F \in RC(Y, y_2)$ such that $f(U) \cap F = \phi$. Hence $y_1 \notin F$. This implies Y is weakly hausdorff. \Box

Theorem 4.5. If $f: X \to Y$ is π -quasi irresolute with a π -quasi-closed graph then X is π - Hausdorff.

Proof. Let x, y be any two distinct points of X. Since f is injective we have $f(x) \neq f(y)$ and thus $(x, f(y)) \in X \times Y - G(f)$. Since G(f) is π -quasi-closed, there exist $U \in \pi O(X,x)$ and $V \in SO(Y,f(y))$ such that $f(U) \cap cl(V) = \phi$. Since f is π -quasi-irresolute there exist $G \in \pi O(X,y)$ such that $f(G) \subset cl(V)$. Therefore, we have $f(U) \cap f(G) = \phi$ and hence $U \cap G = \phi$. This shows that X is π -T₂.

Theorem 4.6. If $f: X \to Y$ is a π -quasi irresolute, closed function from a normal space X onto a space Y, then any two disjoint θ -semi closed subsets of Y can be separated.

Proof. Let F_1 and F_2 be any distinct θ -semi closed sets of Y. Since f is π -quasi-irresolute, $f^{-1}(F_1)$ and $f^{-1}(F_2)$ are disjoint π -closed sets of X and hence closed. By normality of X, there exist open sets U_1 , U_2 in X such that $f^{-1}(F_1) \subset U_1$ and $f^{-1}(F_2) \subset U_2$ and $U_1 \cap U_2 = \phi$. Let $V_i = Y - f(X - U_i)$ for i = 1, 2.

Since f is closed, the sets V_1 and V_2 are open in Y and $F_i \subset V_i$ for i = 1, 2. Since U_1 and U_2 are disjoint and $f^{-1}(F_i) \subset U_i$ for i = 1, 2, we obtain $V_1 \cap V_2 = \phi$. This shows that F_1 and F_2 are separated.

Definition 4.7. A topological space (X, τ) is said to be π -connected if X cannot be written as the disjoint union of two non empty π -open sets.

Theorem 4.8. If $f: X \to Y$ is π -quasi irresolute surjection and X is π -connected, then Y is connected.

Proof. Suppose that Y is not connected space. There exist non-empty disjoint open sets V_1 and V_2 such that $Y = V_1 \cup V_2$. Therefore V_1 and V_2 are clopen in Y. Since f is π -quasi irresolute $f^{-1}(V_1)$ and $f^{-1}(V_2)$ are π -open in X. Moreover $f^{-1}(V_1)$ and $f^{-1}(V_2)$ are non-empty disjoint and $X = f^{-1}(V_1) \cup f^{-1}(V_2)$. This contradicts that Y is not connected.

References

- Arya S. E, Bhamini M. E, (1987) Some generalizations of pairwise Urysohn spaces, Indian J. Pure Appl. Math., 18, 1088-1093.
- [2] Di Maio G., (1984), S-closed spaces, .S-sets and S-continuous functions, Accad. Sci. Torino, 118, 125-134.
- [3] Dlaska K., Ergun N., Ganster M., (1994) Countably S-closed spaces, Math. Slovaca, 44, 337-348.
- [4] Dontchev J, M. Ganster and I.L Reilly, (1999) More on almost s-continuous, Indian J. Math., 41, 139-146.
- [5] Dontchev J. and T.Noiri, (2000), Quasi-Normal spaces and π g-closed sets, Acta. Math. Hungar., 89(3), 211-219.
- [6] E. Ekici (2005). Generalization of perfectly continuous, regular set-connected and clopen functions. Acta Math. Hungar 107 (3), 193–206.
- Ganes.M.Pandya,C.Janaki, I.Arockiarani, (2010) π-set connected functions in Topological Spaces, Int. J. Contemp. Math. Sciences, Vol. 5 no. 36, 1789 - 1798.
- [8] Joseph J. E., Kwack M. H., (1980), On S-closed spaces, Proc. Amer. Math. Soc., 80, 341-348.
- [9] Khedr F. H. and T. Noiri. (1986) On θ-irresolute functions, Indian J.Math 28, 211-217.
- [10] Levine N.(1963), Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70, 36-41.
- [11] M.Stone, (1937) Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41, 374-481.
- [12] Saied Jafari., Takashi Noiri, (2001) On α-Quasi-irresolute functions, Rendiconti Del Circolo Matematico Di Palermo Serie 11, Tomo L, pp. 137-152
- [13] Soundararajan T.,(1971) Weakly Hausdorff spaces and the cardinality of topological spaces, General Topology and its Relation to Modem Analysis and Algebra. III, Proc. Conf. Kampur, 1968, Academia, Prague, , 301-306
- [14] **Travis Thompson**,(1976), S-closed spaces, *Proc. Amer. Math. Soc.* 60, 335-338.
- [15] V. Zaitsev,(1968), On certain classes of topological spaces and their bicompactification, Dokl Akad. Nauk .SSSR., 178, 778-779.