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Abstract 

 

We consider the two-dimensional parallel beam Tomography problem in which both the 

object being imaged and the projection directions are unknown. The angles of projections 

need not to be uniformly distributed. Our solution combines two known approaches: the 

Geometric Moment and the Graph Laplacian. After sorting the projections using the Graph 

Laplacian method we create a one to one moment function of the angles. We then solve for 

each angle uniquely. 
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1. Introduction 

In this paper we consider the problem of two-dimensional parallel beam Tomography in 

which both the object and the projection directions are unknown. Projection directions may be 

unknown or known only approximately due to the uncontrollable motion of the object being 

imaged. For instance, this can happen in magnetic resonance imaging due to the motion of the 

patient. 

Methods of recovering unknown view angles from the projection data have been 

proposed in [1, 2, 3, 4, and 5]. Of these, [4] and [5] utilize the concept of Geometric Moments of 

the projections. In [5], author relates the image’s moments to the projections’ moments then builds a 

nonlinear system of equations in which the angles of questions are among the unknown quantities 

of this system. Non uniqueness of solution in this approach was addressed by many authors such as 

in [4].In fact, [4] derives conditions for the existence of unique reconstruction from unknown 

directions and shifts. In addition, an algorithm for estimating the directions is introduced in [3], it 

consists three steps: 1) Initial direction estimation; 2) Direction ordering;3) Joint maximum 

likelihood refinement of the directions and shifts. 

Another approach: [1] and [2] is fundamentally based on the principal component analysis 

(PCA) or the multi-dimensional scaling (MDS) . It consists of constructing an N× N matrix whose 

entries are obtained from similarities between pairs of projections, followed by a computation of 

the first few eigenvectors of the similarity matrix. This approach builds on the fact that the map 

𝜑→ 𝑓𝜑
∨is continuous from S1 to  the space L2(𝑅); where 𝑓𝜑

∨is the Radon Transform of the function 

f at  angle 𝜑, and 𝑆1 is the unit circle. The Graph Laplacian tool was employed in [2] for sorting 

the given projections with respect to their directions where the ordering was obtained by a 

proper application of the diffusion map framework. 

Our tools are the Geometric Moment and the Graph Laplacian combined. Indeed, we 

used the moments in dealing with transformation problems in [6] and [10]. 

Briefly speaking: After sorting the projections using Graph Laplacian method  

we work with the moments of the projections to create a one to one moment function of the angles. 

We then solve for each angle uniquely and accurately. 

In so doing, [2] will be a major part of our algorithm.  A brief description to this approach will be 

given shortly. However, readers who are not familiar with the application of the Graph Laplacian 

to Tomography may review [1] and [2].  
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In the remaining parts of this introduction we introduce notation and basic formulas.  

Following [7], let 𝑓 be a 2-D nonnegative function on the xy- plane with a compact support 

and 𝜉 = (cos 𝜑
sin 𝜑

) is a unit vector; the Radon Transform of f along the line 𝐿 = { (𝑥,𝑦): 𝑥 cos 𝜑 +

𝑦 sin 𝜑 = 𝑝} is given by: 

𝑓∨(𝑝, 𝜑) = 𝑓𝜑
∨ (𝑝) = ∫ 𝑓(𝑝 cos𝜑 −𝑡 sin 𝜑,

∞

−∞
𝑝 sin𝜑 +𝑡 cos 𝜑 ) 𝑑𝑡,   (1) 

We may use the vector form  𝑓∨ (𝑝,𝜑) =  𝑓∨ (𝑝,𝜉) 

For any 𝜑 ∈ [0, π]and k= 0, 1, 2...we denote the kth moment of the projection 𝑓∨(𝑝,𝜑) by: 

𝑀𝑓𝑘,𝜑 = 𝑀𝑓𝑘(𝜑) ∶= ∫ 𝑝𝑘𝑓∨(𝑝,𝜑)𝑑𝑝
∞

−∞
,                                                              (2) 

We sometimes use the notation  𝑀𝑓𝑘(𝜑) to stress on the fact that 𝑀𝑓𝑘 is a function of 𝜑. 

However,  𝑀𝑓𝑘,𝜑 will be used. 

2. Problem Formulation 

Let f be an unknown nonnegative function with compact support on the xy- plane, for 

which we have 𝑁projections, say 𝑓∨(𝑝, 𝜑𝑗 ); 𝑗 = 1,… , 𝑁 at the unknown angles 𝜑𝑗.We consider 

the problem of recovering the projection angles. However, the problem takes different forms due 

to different mathematical assumptions associated with it.  Examples of variations of mathematical 

assumptions include: whether or not 𝑁 is large enough in the sense that we have continuum values 

of 𝑓∨(𝑝, 𝜑𝑗 ). Or, whether a few number of projections (may be two or three) are already known, 

which is realistic in some applications. Or, whether the center of mass of  f need not to be on the 

origin,  and so on. 

In this paper, we consider the following problem: 

Problem: 

Let 𝒇be nonnegative function on the xy- plane with support on the region [0, a] x [0, a] where a is a 

positive number. Assume that we have N projections 𝒇∨(𝒑, 𝝋𝒋), 𝒋 = 𝟏,… 𝑵 𝒔𝒐 𝒕𝒉𝒂𝒕 {𝝋𝒋}  is a fine 

sample of  [𝟎,𝝅] but not necessarily uniformly distributed. Our goal is to determine the angles of 

projections and reconstruct the unknown image f. 
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3. Review of Relevant Results 

We organize this section in two parts: first, we review some relevant basic results on the 

Geometric Moments.  Second, we briefly describe the Graph Laplacian algorithm- as a faithful 

approach-used to recover the correct ordering of the projections. 

3.1 Review of Moments of Radon Projections 

Consider (2): we briefly review some basic relevant results regarding the  

kth moment 𝑀𝑓𝑘(𝜑) of the projection 𝑓∨(𝑝,𝜑). It is well known, [8], that: 

𝑀𝑓𝑘(𝜑) = ∑ (
𝑘

𝑗
)

𝑘

𝑗=0

𝑐𝑜𝑠𝑘 −𝑗(𝜑). sinj(𝜑) . ∬ 𝑥 𝑘−𝑗𝑦𝑗  𝑓(𝑥,𝑦) 𝑑𝑥 𝑑𝑦

∞∞

−∞−∞

 

That can be written as: 

𝑀𝑓𝑘(𝜑) = 𝜇𝑘,0 𝑐𝑜𝑠𝑘𝜑 + 𝜇𝑘−1,1𝑐𝑜𝑠𝑘−1 𝜑𝑠𝑖𝑛𝜑 + ⋯ + 𝜇0𝑘𝑠𝑖𝑛𝑘 𝜑,                    (3) 

We choose to determine the first moment function using the angles  

𝜑 = 0, and 
𝜋

2
 .  With direct calculations on (3) we may write: 

 

𝑀𝑓1(𝜑) ∶= ∫ 𝑝𝑓∨ (𝑝,𝜑)𝑑𝑝
∞

−∞
 = 𝑀𝑓1,0  𝑐𝑜𝑠𝜑 + 𝑀𝑓1

𝜋

2
,𝑠𝑖𝑛𝜑                             (4) 

 = 𝑅𝑐𝑜𝑠 (𝜑 + 𝛼) 

where R = √𝑀𝑓1,0
2 + 𝑀𝑓

1,
𝜋

2

2   and 𝑡𝑎𝑛(𝛼) =
−𝑀𝑓

1 ,
𝜋
2

𝑀𝑓1 ,0
.                                      (5) 

 

3.2 Review of the Graph Laplacian Approach 

A corner stone for applying the Graph Laplacian tool to our problem is the following 

proposition that was mentioned in [9] and proved in [1]. 

Proposition1: 

Suppose 𝑓 ∈ 𝐿2(𝑅2) and that f vanishes outside the unit disk. 

Then,𝑓𝜑
∨  𝑖𝑠 𝑖𝑛 𝐿2(𝑅)𝑓𝑜𝑟 𝑎𝑙𝑙 𝜑 𝑎𝑛𝑑 ‖𝑓𝜑1

∨ − 𝑓𝜑2

∨ ‖ tends to zero as 𝜑1 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ𝑒𝑠 𝜑2.  In other 

words, the map 𝜑→ 𝑓𝜑
∨ is continuous from 𝑆 1𝑡𝑜 𝐿2(𝑅), where 𝑆 1is the unit circle. 

 The measurements are assumed to be discrete samples of the Radon Transform  𝑓∨(𝑝,𝜑) with fine 

uniformly spaced values of the argument p given at 𝑝1,𝑝2  , … 𝑝𝑚 .  Every projection 

(vector),𝑓∨ (𝑝,𝜑), is viewed as a point in 𝑅𝑚. When varying the beaming direction 𝜑 over 𝑆1, the 

projection vectors sample a parametric closed curve: ∁ in 𝑅𝑚parametrized by 𝜑. 
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As said in the introduction, a major step of our proposed solution will require sorting the 

data with the assumptions that the beaming directions are not necessarily uniformly distributed 

over 𝑆 1 and that the projections (points) are not uniformly distributed over ∁. 

In so doing, we will follow the approach of [2] whose method consists of constructing an 

N× N weight matrix whose entries are obtained from similarities between pairs of projections, 

followed by a computation of the first few eigenvectors of the similarity matrix.  

The fact that the projections are not uniformly distributed over ∁ suggest that we use the 

Density Invariant Graph Laplacian explained in [2]. 

This normalization leads to the Laplace-Beltrami operator, and the computed eigenvectors will be 

discrete approximations of the eigenfunctions of the 

Laplace-Beltrami operator over ∁.Specific usage and implementation of this algorithm is 

illustrated in section 5 of this paper. 

4. Proposed Approach  

To solve the stated problem, we divide the analyses in two parts: first we introduce our 

theoretical solution that combines the theory of Geometric Moments and the Graph Laplacian 

algorithm. Second, we adjust the analysis to fit the discrete setting of the problem. 

4.1 A Theoretical Solution 

Consider the moment function in (4):  𝑀𝑓1(𝜑) = 𝑅𝑐𝑜 𝑠(𝜑 + 𝛼) on [0,𝜋] 

that is drawn in figure1. Clearly, 𝑅 = 𝑚𝑎𝑥 𝑀𝑓1(𝜑) on [0,𝜋]. 

 Let r: = 𝑚𝑖𝑛  𝑀𝑓1(𝜑) 𝑜𝑛 [0,𝜋]. Observe that 𝑟 = 𝑅𝑐𝑜𝑠 (𝜋 + 𝛼), equivalently:  

 α = −cos−1 (
−r

R
) 

α < 0   𝑎𝑛𝑑  0 ≤ |α| ≤
π

2
                                                                                                (6) 

Observe also that 𝑀0 ≔ 𝑅𝑐𝑜𝑠 (𝛼) > 0. 

Notice that 𝑀𝑓1(𝜑) is not an one to one function on [0,𝜋] . Thus, for an individual 

projection𝑓∨(𝑝, 𝜑) with  unknown 𝜑 ∈ [0,𝜋], the equation 

  𝑀𝑓1(𝜑) = 𝑅𝑐𝑜 𝑠(𝜑 + 𝛼) has two possible solutions in[0,𝜋]. Clearly, more work is needed to 

determine the correct angle.  

Extend 𝑀𝑓1(𝜑) using the fact that 

 𝑓∨(𝑝,𝜑 + 𝜋) =  𝑓∨(−𝑝,𝜑),                                                                                (7) 
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So we have   𝑀𝑓1(𝜑) on [0,2𝜋]. In this way, 𝑓∨ (𝑝, |𝛼|) and 𝑓∨(𝑝, 𝜋 − 𝛼) are the two 

projections of maximum and minimum moments, 𝑅 and –𝑅 respectively. 

Let ∁ be the continuous simple closed parametric curve in 𝑅𝑚 parameterized by 𝜑 ∈

[0,2𝜋]. Each point on ∁ is the Radon Transform𝑓∨(𝑝, 𝜑) with a fine uniformly spaced values of the 

argument p given at 𝑝1, 𝑝2  , … 𝑝𝑚 . 

In particular, let 𝒫1and 𝒫2be the two points on ∁ that represent the projections 

𝑓∨(𝑝, |𝛼|) and 𝑓∨(𝑝,𝜋 − 𝛼) respectively. Then, there are only two ways 

(Orientations) to travel on ∁ from 𝒫1  to 𝒫2 . For example, in figure1, the part of the graph on  

[|𝛼|, 𝜋 − 𝛼] can be (identified) or represented by the function: 

  𝑀𝑓1(𝜑) = 𝑅𝑐𝑜 𝑠(𝜃𝜑 ) ; 𝜃𝜑 ∈ [0, 𝜋] and 𝜑 ∈ [|𝛼|, 𝜋 − 𝛼]     (8) 

Solving (8) for 𝜃𝜑  we obtain: 

𝜃𝜑 = 𝑐𝑜𝑠−1[
  𝑀𝑓1(𝜑)

𝑅
]         (9) 

However, due to the Rotation and Reflection Rules of Radon Transform we may eventually 

producing an 𝛼-rotated image, or reflected image rather than the original one. 

 

 
 

Figure1. The shifted cosine 𝑀𝑓1
(𝜑)  on [0,2𝜋] showing the factors 𝑅, 𝑟, 𝛼, 𝑎𝑛𝑑  𝑀0 
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4.2 The Discrete Setting of the Problem 

Given N projections𝑓∨ (𝑝, 𝜑𝑗), 𝑗 = 1, … 𝑁 so that 𝜑𝑗is a fine sample of [0,𝜋]. 

We assume that we have fine uniformly spaced values of the argument p given at 𝑝1, 𝑝2  ,… 𝑝𝑚 . 

We double the available data using the fact that  𝑓∨(𝑝, 𝜑𝑗 + 𝜋) =  𝑓∨(−𝑝, 𝜑𝑗 ) so we have 2N 

projections on [0,2𝜋]. We store these data as columns of the 𝑚 × 2𝑁 matrix  ℛ0.  

Now, we subject the columns of ℛ0 to the Graph Laplacian algorithm; more details are 

presented in the next section. 

Let ℛ be the 𝑚 × 2𝑁 matrix of the ordered projections                                       

Let ℳ let be the vector of moments of the columns of ℛ such that 

ℳ𝑗 =   𝑀𝑓1(𝜑𝑗 ), 𝑗 = 1 … ,2𝑁                                                                               (10) 

Consider the function  𝑀𝑓1(𝜑) = 𝑅𝑐𝑜𝑠 (𝜑 + 𝛼): we observe that 

𝑅 ≈ max ℳ. Indeed, knowing α is not critical to our proposed calculations, however, it can be 

approximated using (6). 

Let 𝑗1and 𝑗2 be the locations of 𝑓∨(𝑝, |𝛼|)and 𝑓∨(𝑝,𝜋 − 𝛼) in ℛ. 

These are the projections correspond to the points 𝒫1and  𝒫2  described above. 

Thus, we can work with the set of projections 𝑗1, … , 𝑗2 individually and for each projection of 

these, say 𝑓∨(𝑝, 𝜑𝑗), we have: 

𝜃𝑗 = 𝑐𝑜𝑠−1 [
  𝑀𝑓1 (𝜑𝑗)

𝑅
] = 𝑐𝑜𝑠−1[ 

ℳ𝑗

𝑅
 ]                                                                    (11) 

In this way, we obtain a sufficient set of projections with exact values of their angles  𝜃𝑗𝜖[0, 𝜋]. 

5. Calculations and Examples 

We now summarize our approach and show some experiments. 

5.1 Algorithm 

First, we can summarize section 4.2 using the following algorithm: 

1. Start with the 𝑚 × 2𝑁 matrix ℛ0  

2. Order ℛ0 and get  ℛ;  see below  

3. Compute ℳ as in (10) , 𝑅 ≈ max ℳ ,  and identify 𝑗1and 𝑗2  

4. For each projection 𝑓∨ (𝑝, 𝜑𝑗) with 𝑗1 ≤ 𝑗 ≤ 𝑗2 compute 𝜃𝑗 = 𝑐𝑜𝑠−1[
ℳ𝑗

𝑅
]       

5. Reconstruct the image 
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For step 2:  Given 𝑓∨(𝑝, 𝜑𝑗 ); 𝑗 = 1, … , 𝑁. Using [2], we compute the 2-norm distances and the 

weight matrix W: 

𝛿𝑖𝑗 = ||𝑓∨ (𝑝,𝜑𝑖) − 𝑓∨(𝑝, 𝜑𝑗 ) ||                                                   (12) 

𝑊𝑖𝑗 = 𝑒𝑥𝑝 [
−𝛿𝑖𝑗

2

2𝜖
] , 𝑖, 𝑗 = 1, … , 𝑁, 𝜖 > 0                                 (13) 

Normalize  𝑊 using the diagonal matrix 𝐷 with 𝐷𝑖𝑖 = ∑ 𝑊𝑖𝑗
𝑛
𝑗=1 , and form the Graph 

Laplacian 𝐿 = 𝐷−1𝑊 − 𝐼 where 𝐼 is 𝑁 × 𝑁 identity matrix . 

Next, we obtain the Density Invariant Graph Laplacian 𝐿1by: 

𝐿1 = 𝐷1
−1𝑊1 − 𝐼,        (14) 

With 𝑊1 = 𝐷−1𝑊𝐷−1 and 𝐷1is the diagonal matrix: (𝐷1)𝑖𝑖 =  ∑ 𝑊1 𝑖𝑗
𝑁
𝑗=1  

Then, we compute 𝑣1and 𝑣2, the first nontrivial eigenvectors of 𝐿1, then use the   diffusion map to 

sort the projections 𝑓∨(𝑝, 𝜑𝑗 ) according to  

𝜔𝑗 = 𝑡𝑎𝑛−1 [
𝑣1(𝑗)

𝑣2(𝑗)
]                                                               (15)                               

5.2 Examples 

We show two of our experiments: in the first example, we consider a block image from a 

family of images that we developed in [6]. This family provides good phantoms and efficient 

numerical tools for carrying calculations such as the Radon Transform or the moment’s integrals. 

The Block F shown in figure 2a is subjected to Algorithm 5.1 with beaming direction is not 

uniformly distributed as in figure 2 and is uniformly distributed as in figure 3. In both cases, the 

algorithm works fine and recover the exact angles of projections. We repeated the experiments 

on a brain image as in figures 4 and 5. Clearly, in all of these outputs: images reconstructed from 

uniformly beaming directions are smoother than the ones that are not.  But this is not the concern 

in this paper because what matters in these experiments is to show that we can recover the angles 

of projections in all cases. 
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(a) (b)                                            (c)                                          (d) 

Figure2. Beaming direction is not uniformly distributed. In MATLAB: Angle = (pi.*rand(300,1))' 
a). the original image. b). recovered image using iradon assuming angles of projections are known. 

c and d). Recovering using the two possible orientations from  j1  to j2 as in algorithm 5.1. 
 

 
(a) (b)                                                (c)                              (d) 

Figure3. Beaming direction is uniformly distributed. In MATLAB: Angle=linspace (0,pi,300). 
a). the original image. b). recovered image using iradon assuming angles of projections are known. 

c and d).  Recovering using the two possible orientations from  j1 to j2 as in algorithm 5.1. 
 

 
(a)(b)                                (c)     (d) 

Figure4. Beaming direction is not uniformly distributed. In MATLAB: Angle=(pi.*rand(300,1))' 

a). the original image. b). recovered image using iradon assuming angles of projections are known. 

c and d).  Recovering using the two possible orientations from  j1 to j2 as in algorithm 5.1. 

 
(a) (b)                                       (c)                           (d) 

Figure5. Beaming direction is uniformly distributed. In MATLAB: Angle=linspace(0,pi,300). 
a). the original image. b). recovered image using iradon assuming angles of projections are known. 

c and d).  Recovering using the two possible orientations from  j1 to j2 as in algorithm 5.1 
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5. Conclusion 

We have reviewed the problem of Tomographic reconstruction when the orientation 

(angles of projections) are unknown and need not to be uniformly distributed over the unit circle. 

In doing so, we have combined the Moment and the Graph Laplacian approaches. It is possible to 

obtain two possible angles for each projection using Geometric Moments of the projections. 

However, this can’t determine the correct angle. 

We formed a simple closed parametric curve ∁ in 𝑅𝑚parameterized by the angles of 

projections𝜑 ∈ [0,2𝜋]. Each point on that curve is the Radon Transform 𝑓∨ (𝑝,𝜑) with fine 

uniformly spaced values of the argument p given at 𝑝1,𝑝2  , … 𝑝𝑚 .We used the Graph Laplacian 

approach as a known tool for sorting the projections according to their angle of projections. Two 

particular points 𝒫1and 𝒫2  on ∁ are of critical importance. These points correspond to the 

projections with maximum and minimum moments. There are only two ways (Orientations) to travel 

on ∁ from 𝒫1 to 𝒫2 . One way produces a rotated image and the other produce a rotated- 

reflected image. Indeed, we can calculate the angle of rotation. We tested several types of 

images and we show the results of our algorithm on a block image as well as a brain image. 

Algorithm works and recover the exact angles whether or not the beaming directions are 

uniformly distributed over 𝑆 1. 

  Our approach requires a fine sample of projections, same as [2]. However, [2] assumes 

the projection angles to be uniformly distributed over the circle so that they can be estimated 

after recovering the correct ordering of the projections. 

A related problem in the literature is to determine the angles of projections when only a few 

projections are available as in [5] that solved the problem but did not address the uniqueness of 

its proposed solution.  Indeed, the fact that we can completely determine 𝑀𝑓1(𝜑) in (4) using only 

two orthogonal projections is encouraging observation, that is because for an individual 

projection 𝑓∨(𝑝,𝜑) with  unknown 𝜑 ∈ [0, 𝜋] we always can use 𝑀𝑓1(𝜑) and obtain (only) two 

possible solutions. A proper use of higher order moments of the projections or some other types of 

moments may improve the current approaches. We will be researching these possibilities in a 

future work. 
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