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Abstract

Soybeans [Glycine max (L.) Merr.] are susceptible to many
diseases including fungal diseases such as soybean sudden
death syndrome (SDS). Several studies reported SDS resis-
tance quantitative trait loci (QTL) on the soybean genome
using different recombinant inbred line (RIL) populations
and low density genetic linkage maps. High density exclu-
sively single nucleotide polymorphisms-based (SNP-based)
maps were not yet reported in soybean. The objectives of
this study were (1) to construct a high density SNP-based
genetic linkage map of soybean using the ‘PI438489B’ by
‘Hamilton’ (PIxH, n=50) recombinant inbred line population,
and (2) to map QTL for SDS resistance using this high-density
reliable genetic SNP-based map. The PI438489B by Hamilton
high-density SNP-based genetic map was a high density map
composed of 31 LGs, 648 SNPs, and covered 1,524.7 ¢cM with
an average of 2.37 ¢M between two adjacent SNP markers.
Fourteen significant QTL were identified for SDS resistance
using interval mapping (IM) and composite interval map-
ping (CIM) with LOD scores that ranged between 2.6 and 5.0.
Twelve QTL were identified for foliar disease severity (FDS)
and three QTL for root rot severity (RRS) of which one QTL
underlain both FDS and RRS. The fourteen QTL were mapped
onto ten separate chromosomes of the soybean genome. Sev-
en of the intervals encompassing the QTL had been identified
previously (on LGs C1, C2, D1b, G, L, N and O) associated
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with resistance to SDS but seven were novel (LGs A2 (2), B1,
C2, D1a, D1b and O). We constructed the first PI438489B by
Hamilton exclusively SNP-Based map and identified fourteen
QTL that underlie SDS resistance including both resistances
to foliar and root rot symptoms caused by Fusarium virguli-
forme infection. The QTL discovered here for SDS resistance
could be useful to include in breeding programs in develop-
ing soybean cultivars resistant to SDS.

Introduction

Soybean [Glycine max (L) Merr.] sudden death syndrome
(SDS) is caused by the fungus Fusarium virguliforme (Aoki et al.,
2005). SDS is capable of causing major yield losses in soybean
(Luo et al., 2000). Host resistance in soybean to SDS has been
found to be polygenic and controlled by several quantitative
trait loci (QTL) (Meksem et al., 1999; Igbal et al., 2001).

In the ‘Essex’ by ‘Forrest’ recombinant inbred line (RIL) popu-
lation (ExF, n=100) nine QTL have been discovered (Kassem et
al., 2006, 2007). More specifically, two were found on chro-
mosome 13 (Linkage Group [LG]) F); one QTL each on chro-
mosomes 16 (LG J), 6 (LG C2), and 20 (LG I); and four QTL on
chromosome 18 (LG G) (Kassem et al., 2007). To date 3 of these
QTL were confirmed in near isogeninic lines (NILs); two on LG
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G and one on LGC2. Three additional QTL for SDS resistance
have been found on chromosomes 3 (LG N), 6 (LG C2), and 18
(LG G) using the ‘Pyramid’ by ‘Douglas’ RIL population (PxD,
n=90) (Kassem et al., 2007; Njiti et al., 2002). Prabhu et al.
(1999) tested the markers Satt038 (chromosome 18 — LG G)
and BLT65 (chromosome 8 — LG A2) and found QTL for SDS
resistance associated with the LG G markers in the ‘Hartwig’ by
‘Flyer’ RIL population (FxH, n=50) (Prabhu et al., 1999). Farias
et al. (2007) mapped QTL for SDS resistance (DX) using two RIL
populations ‘Ripley’ by ‘Spencer’ (RxS, n=91) and Pl 567374 by
‘Omaha’ (PI567374x0, n=96) (Farias et al. 2007). These QTL
were located on chromosomes 4, 17, and 19 (LGs C1, D2, and
L, respectively) in the first population and on chromosomes 17
and 20 (LGs D2 and 1) in the latter one (Farias et al., 2007). It
is worth mentioning thatthe D2 QTL was confirmed in NiLs too. In
a recent study, Kazi et al. (2007) identified QTL on LG C2, D2
and G in FxH (n=94) and confirmed the D2 QTL in NiLs (Kazi et
al., 2007; Kazi et al.,, 2008). However, the ExF, HxF, PxD, RxS,
and PI567374x0O genetic linkage maps that were used to map
SDS resistance QTL were not high density genetic maps and also
the populations that used were limited. The ExF genetic linkage
map was based on 237 markers (Kassem et al., 2006), the FxH
genetic linkage map was composed of 144 markers (Kazi et al.,
2007, 2008), the PxD genetic linkage map was composed of
112 markers (Njiti et al., 2002), the RxS map was composed of
112 simple sequence repeats (SSRs) with only 68 of the markers
linked (Farias et al. 2007), and the P1567374x0O map was com-
posed of 104 SSRs with only 41 of the markers linked (Farias
et al., 2007).

During the last two decades, soybean genetic maps have
been increasing in the number of markers used to create the
maps. The first genetic map in soybean was based on 150 mark-
ers (Keim et al.,, 1990). Subsequently, the number of markers
used to create genetic maps has varied greatly and many dif-
ferent types of markers such as restriction fragment length poly-
morphisms (RFLPs), amplified fragment length polymorphisms
(AFLPs), random amplifications of polymorphic DNA (RAPDs),
and SSRs have used.. The number of markers has varied from
110 markers (Shoemaker et al., 1995), to 112 markers (Njiti et
al., 2002), to 132 markers (Lark et al., 1995), to 237 markers
(Kassem et al., 2006), to high density composite genetic maps
(Song et al., 2004).

Since the discovery of single nucleotide polymorphism (SNP)
markers in mice and humans (Collins et al., 1998; Lindblad-Toh
et al., 2002), several methods of SNP discovery have been de-
scribed in different species including plants (Nicod et al., 2003;
Barbazuk et al., 2007; Hyten et al., 2010a). SNPs are the most
abundant genetic marker available for the creation of genetic
maps and can be used with high-throughput genotyping tech-
nology making them highly desirable for QTL mapping stud-
ies (Brookes et al., 1999; Nicod et al., 2003; Barbazuk et al.,
2007; Hsu et al.,, 2008; Fan et al., 2003). On this basis, SNP-
based maps have been constructed in many plant species includ-
ing Arabidopsis thaliana (Li et al.,, 2000), almond (Wu et al.,
2009), sugar beet (Mohring et al., 2004), soybean (Hyten et al.,
2010b), and others. However, the genetic maps in soybean have
not been exclusively SNP-based but contain SNPs anchored with
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other markers such as RFLPs, AFLPs, RAPDs, and SSRs except
of a recent high density soybean SNP-based map containing
1,790 SNPs (Hyten et al., 2010a).

Genetic linkage maps have been used to identify and map
QTL for many important agronomic traits in soybean (SoyBase,
2011). High density maps, the marker-type, and population size,
are among important factors for mapping QTL. The obijectives
of this study were (1) to construct a high density SNP-based
genetic linkage map of soybean using the P1 438489B by ‘Ham-
ilton’ (PIxH, n=50) RIL population, and (2) to map QTL for SDS
resistance using this high-density genetic SNP-based map.

Materials and Methods
Plant Material

In this study, we used the Pl 438489B by Hamilton recombi-
nant inbred line (RIL) population (PIxH, n=50). Pl 438489B is a
plant introduction from China and is resistant to SDS. Hamilton
was developed at the Illinois Agricultural Experiment Station and
was released for its high yield (Nickell et al., 1990) although it is
susceptible to SDS. The Pl 438489B by Hamilton RIL population
was developed at the University of Missouri Agronomy Research
Center (Yue et al., 2001) and advanced to the F, . generation
by Dr. Silvia Cianzio at the ISU research site at the Isabela Sub-
station, Univ. of Puerto Rico, Isabela, Puerto Rico.

DNA Isolation

DNA was extracted using DNeasy 96 Tissue Kit (QIAGEN,
Inc., Valencia, CA, USA) from young leaf tissue. DNA quanti-
fication was performed using fluorescent nucleic acid stain with
Hoechst 33258 dye (Cat no. H21491 Invitrogen, Carlsbad, CA,
USA). The DNA samples were read in a Synergy 2 plate reader
(Biotek , Winooski, VT, USA) and then diluted to 100 ng JI"' at
final concentration.

SNP Genotyping

The 1,536 Universal Soy Linkage Panel 1.0 from Hyten et al.
(2010b) was used to screen the 50 RILs and the GoldenGate
assay was performed as per the manufactures protocols and as
described previously (Fan et al.,, 2003; Hyten et al., 2008). The
lllumina BeadStation 500G (lllumina Inc., San Diego, CA) was
used for genotyping the GoldenGate assay. The automatic al-
lele calling for each locus was accomplished with the BeadStudio
version 3.2 software (lllumina Inc., San Diego, CA). All BeadStu-
dio data for the 1,536 SNPs were visually inspected and re-
scored if any errors in calling the homozygous or heterozygous
clusters were evident.

SDS Phenotypic Scoring

The RIL population was phenotyped for disease severity
in the plant pathology greenhouse at lowa State University,
in Ames, lowa. The experiment was established as a random-
ized complete block design with three replications per RIL. The
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experimental unit was a 3” styrofoam cup containing three
plants growing in soil infested with F. virguliforme. Inoculum was
prepared according to a protocol by Munkvold and O’Mara
(2002). One kilogram of a sterile 5:1 sand:cornmeal mixture
was infested with 0.6 ml of a 106 spore/ml suspension of the
Mont 1 isolate of F. virguliforme (Li et al., 2000), resulting in an
initial spore concentration of 600 spores g of inoculum. The
inoculum was incubated for 10 days at room temperature (ap-
proximately 24°C), after which it was homogeneously mixed in a
1:5 ratio with pasteurized soil and sand mix (1:1 by vol). Three
seeds were then planted in styrofoam cup filled with the infested
soil mix. The cups were maintained on a greenhouse bench at
2312°C, and a 16 h photoperiod for 30 days. Foliar diseases
severity (FDS) was rated 15 (FDS 1), 20 (FDS 2), 25 (FDS 3), and
30 (FDS 4) days after planting (DAP) as a percentage of total
leaf area with typical SDS symptoms. Root rot severity (RRS)
was evaluated 30 DAP by thoroughly washing the roots in run-
ning tap water and visually evaluating the percentage of root
area showing brown or black discoloration. This highly controlled
assay has been shown to produce results in seedlings that cor-
relate closely with field performances (Njiti, 2001). The experi-
ment was conducted twice.

Statistical Data Analysis

Means, ranges and standard deviations were calculated for
the RIL lines and their parents from raw data. Analyses were
performed on JMP 8.02 (SAS Institute Inc., Cary, NC, USA).

QTL Mapping

For mapping of QTL and estimation of their effects, com-
posite interval mapping (CIM) was performed using the Win-
QTL Cartographer version 2.5 software (Wang et al., 2005).
The Model 6 and its default settings were adopted. To establish
experimental-wise LOD cutoff values for declaring QTL signifi-
cant at P < 0.05 1,000 permutations were performed. In ad-
dition, a value of P < 0.0002 or LOD 3.7 was suggested by an
approximate Bonferroni correction (P<0.05/250) for the set of
about 250 independent (unlinked or >10 cM apart) DNA mark-
ers (from the 679 mapped). However, at genomic regions where
gaps between adjacent markers were greater than 10 cM in the
map associations 0.005>P>0.0005 (2.3 < LOD < 3.3) were
accepted as a potentially significant association. If the interval
was large or was flanking a single marker the uncorrected P
value of <0.05 was accepted. Precedents with first-pass map-
ping of other quantitative traits (Igbal et al., 2001; Kassem et
al., 2006, 2007; Njiti et al., 2002; Prabhu et al., 1999; Farias
et al.,, 2007; Kazi et al., 2007) have shown these criteria to be
valid during the later NIL based maps of the intervals that were
inferred at marginal P values (Meksem et al., 1999).

Genetic Map Construction
The current Pl 438489B by Hamilton genetic map is exclusive-

ly SNP-based and was constructed in several steps using Join-
Map 4.0 software (Feltus et al., 2010). The SNP markers were

initially grouped and assigned to the soybean chromosomes
based on their mapped position on the soybean Consensus 4.0
map (Hyten et al., 2010b). We used the regression mapping
algorithm with the default parameters and Kosambi’s mapping
function to determine map order and genetic distances.

Finding Potential Genes that Underlie SDS QTL

Each QTL was bounded by two single nucleotide polymor-
phisms (SNPs). The DNA sequence of the SNPs was obtained by
searching the NCBI Single Nucleotide Polymorphism database
(http:/ /www.ncbi.nlm.nih.gov/projects/SNP /). The SNP DNA se-
quences were used as a query in a BLAST search of the Glycine
max genome, version Williams 82 genomic sequence (http://
soybase.org/gbrowse/cgi-bin/gbrowse/gmax1.01/).The
BLAST search revealed the nucleotide position of each SNP on
the chromosome of interest. The nucleotide positions were used
to query the soybean whole genome sequence (Glycine max
version 1.01) (Schmutz et al., 2010) that included gene names
and gene descriptions (http://soybase.org/gbrowse/cgi-bin/
gbrowse/gmax1.01/). The results included the genes and gene
descriptions of all genes bounded by the SNPs, and the data
was pasted intfo Microsoft Excel version 2007 spreadsheet for
subsequent analysis. To determine common genes within all QTL
intervals, a single excel file was created with three columns: QTL,
gene name and gene description. The QTL and gene name col-
umn were concatenated to form the QTL/gene column and a de-
limiter (semicolon) was appended at the end. The QTL and gene
name columns were deleted leaving two columns: QTL/gene and
gene description. The excel function Remove Duplicates was used
to remove duplicate QTL/genes in a given QTL based on the
gene description. The columns were sorted alphabetically based
on gene description. The following function identified genes that
were common to more than one QTL and created a new column
(=IF(OR(B2=B3, B2=B1), A2 &” “& B2) where A is the QTL/
gene column and B is the gene description column. Genes that
occurred only in one QTL were labeled as false. The column
was sorted alphabetically and the false values deleted. The ex-
cel function Text to columns was used to separate the column
into two columns using the semicolon delimiter. The first column
was the QTL/gene data and the second column was the gene
description. The columns were sorted alphabetically based on
the gene description column. The function (=COUNTIF A:A, A1)
where A is the column with gene description was used to count
the number of repeating gene descriptions, and a new column
gene frequency was created. The three columns QTL/gene, gene
description and gene frequency were sorted based on gene
frequency. The results are presented in Table 4 (Supplementary
Data).

Results
Trait Distributions
SDS resistance was determined in the RIL population using

foliar disease severity (FDS) and root rot severity (RRS) which
are symptoms caused by F. virguliforme infection of plants in
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the greenhouse. FDS 1, 2, 3, and 4 were scored 15, 20, 25,
and 30 days after planting (DAP), respectively and RRS was
estimated 30 DAP. Means and standard deviations of FDS 1-4
and RRS are shown in Table 1. The RIL population demonstrated
a broad range of variation for the FDS and RRS traits that were
evaluated (Table 1). The variation of FDS 1 ranged from O to 30
(st. dev. 2.437), FDS 2-4 ranged from 0-100 (st. dev 31.189-
35.929) and RRS showed range from O to 100 (st. dev. 14.255)
(Table 1).

Table 1. Means, ranges, skewness and test for nor-
mal distribution within the PI438489B by Hamilton
RIL population.

Traits Mean (+St. Dev.) Range
FDS 1 0.406 (+2.437) 0-30
FDS 2 17.461 (£31.189) 0-100
FDS 3 47.677 (£35.929) 0-100
FDS 4 62.239 (£32.450) 0-100
RRS 89.072 (£14.255) 0-100

SNP-Based Genetic Map

The Pl 438489B by Hamilton SNP-based genetic map was
constructed in several steps using the JoinMap 4.0 software (Fel-
tus et al. 2010). First, the 1536 SNP Universal Soy Linkage Panel
1.0 from Hyten et al. (2010b) was used to screen the parents
Pl 438489B and Hamilton, and the 50 RILs. Out of the 1,536
SNPs there were a total of 679 SNPs which were polymorphic
between the two parents and segregated within the RIL popula-
tion. These 679 SNPs were used to construct the genetic linkage
map. The final genetic map contained 31 LGs and 648 linked
SNP markers (Figure 1). Thirty-one markers were unlinked. The
map coverage was 1,524.7 cM (Figure 1). The average distance
between markers was 2.35 cM (Table 3). This map was used for
genetic mapping of the SDS resistance QTL.

SDS Resistance QTL

Both interval mapping (IM) and composite interval mapping
(CIM) were used to identify SDS resistance QTL. Using CIM,
eleven QTL were identified for SDS resistance and mapped on
10 separate chromosomes of the soybean genome. Eight QTL
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Table 2. The fourteen QTL that underlie SDS resistance found in the soybean Pl 438489B by Hamilton RIL population. The
QTL were found using the CIM of WinQTL Cart., and reported with LOD scores equal or greater than 2.5. Traits measured
were foliar disease severity (FDS 1, 2, 3, or 4 weeks after infection by F. virguliform, respectively) and root rot severity
(RRS) symptoms. QTL were named according to the Soybean Genetics Committee recommendations as revised in March

2007 (http://soybase.org/resources/QTL.php).

Trait No. QTL Chr./LG  Marker/Interval Position (¢cM) LOD R2%(%)
CIM
FDS 2 1 qFDS002-01 1/Dla ss107927723—ss107913849 27.2-42.8 3.0 7.5
2 gFDS002-02 10/0 ss107930838—ss107912519  13.5-15.2 2.6 19.3
3 gFDS002-03 19/L ss107913933-ss107929955 42.0-49.9 4.0 17.7
FDS 3 4 gFDS003-01  2/D1b ss107927695-ss107913858 19.4-21.8 3.6 9.0
5 qFDS003-02 2/D1b ss107920774—ss107912689 30.0-36.0 2.8 5.2
6 gFDS003-03  6/C2 ss107929602-ss107925487 32.8-39.2 4.2 3.5
7 gFDS003-04 8/A2 ss107919498-ss107915722 2.0-13.0 4.6 9.6
FDS 4 8 qFDS004-01 11b/B1 ss107912672-ss107924081 5.5-17.8 2.7 3.4
9 gFDS004-02 18/G $s4969823—-s5s107924619 24.4-28.1 2.9 8.8
RRS 10 qRRS001-01  3/N ss107912585-ss107920575 38.3-42.6 4.2 9.9
11 qRRS001-02 4/C1 ss107929213-ss107929551  51.5-57.3 5.0 8.6
9) gRRS001-03 18/G $s4969823—-s5s107924619 24.4-27.7 2.9 33.3
IM
FDS 2 (3) gFDS002-03 19/L ss107924889-ss107921208 48.0-51.3 2.6 6.0
FDS 3 12 gFDS003-05 6/C2 ss107917031-ss107912977 16.9-32.8 4.2 2.4
(6) gFDS003-03  6/C2 ss107930961-ss107912561 34.5-39.8 4.6 4.7
13 qFDS003-06 8/A2 ss107915722-ss107918074 15.0-28.0 2.7 17.4
FDS 4 14 gFDS004-03 4/C1 ss107924445-ss107918378 57.3-83.9 2.6 4.8
(10) gFDS004-03 6/C2 ss107917031-ss107912977 16.9-32.8 3.4 2.1
(6) qFDS004-04 6/C2 ss107930961—-ss107912561  34.5-39.8 3.6 3.2
RRS (3-9) gRRS001-03 18/G ss107924669-ss107921695 26.5-28.4 2.6 2.3
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Table 3. Statistics of the linkage groups (LGs) of the ‘Pl
438489B’ by ‘Hamilton’ SNP-based genetic linkage map.

LG. Chr. No Coverage  No. of cM/Marker
(ecM) Markers
1.Chr_1 93.0 32 2.91
2.Chr_2 60.2 31 1.94
3.Chr_3 51.7 24 2.15
4.Chr_4 98.4 31 3.17
5.Chr_5a 49.8 18 2.76
6.Chr_5b 34.1 8 4.26
7.Chr_6 68.4 44 1.55
8.Chr_7 79.9 35 2.28
9.Chr_8 119.4 50 2.39
10.Chr_9 73.0 53 1.38
11.Chr_10 118.5 26 4.55
12.Chr_11a 4.5 12 0.37
13.Chr_11b  18.7 8 2.34
14.Chr_11c¢ 18.2 4 4.55
15.Chr_11d 6.9 4 1.72
16.Chr_12 58.5 25 2.34
17.Chr_13a  35.0 18 1.94
18.Chr_13b  65.9 21 3.14
19.Chr_14 99.5 33 3.01
20.Chr_15a 37.1 10 3.71
21.Chr_15b  37.3 25 1.49
22.Chr_16a  28.2 7 4.03
23.Chr_16b  37.9 12 3.16
24.Chr_17a 23.8 16 1.48
25.Chr_17b  27.7 8 3.46
26.Chr_17c 16.8 15 1.12
27.Chr_17d  11.9 3 3.96
28.Chr_18 35.1 30 1.17
29.Chr_19 54.2 16 3.38
30.Chr_20a  22.5 12 1.87
31.Chr_20b  38.6 11 3.51
Total 1524.7 642 2.37

were found for foliar (FDS) resistance only, two QTL for root rot
(RRS) resistance only, and one QTL which conferred resistance
on both leaves and roots. The first QTL was associated with the
FDS 2 trait (qFDS002-01) was identified in the marker inter-
val ss107927723—ss107913849 on chromosome 1 (LG D1a).
The QTL interval spanned approximately 15.6 cM, had a peak
LOD score of 3.0, and an R2 of 7.5% (Table 2, Figure 1). The
second QTL associated with the FDS 2 trait (qFDS002-02) was
identified in the marker interval ss107930838-ss107912519
on chromosome 10 (LG O). The QTL interval spanned approxi-
mately 1.7 cM, had a peak LOD score of 2.6, and an R2 of
19.3% (Table 2, Figure 1). The third QTL which was associated
with the FDS 2 trait (qFDS002-03) was identified by the marker

interval ss107913933—ss107929955 on chromosome 19 (LG
L). The QTL interval spanned approximately 7.9 cM, had a
peak LOD score of 4.0, and an R2 of 17.7% (Table 2, Figure
1). The three QTL explained approximately 50% of the total
variation in FDS 2. The fourth QTL which was associated with the
FDS 3 trait (QFDS003-01) was identified by the marker interval
ss107927695—-ss107913858 on chromosome 2 (LG D1b). The
QTL interval spanned approximately 2.4 cM, had a peak LOD
score of 3.6, and an R2 of 9.0% (Table 2, Figure 1). The fifth
QTL that was associated with the FDS 3 trait (qFDS003-02) was
identified by the marker interval ss107920774—ss107912689
on the same chromosome 2 (LG D1b). The QTL interval spanned
approximately 6 cM, had a peak LOD score of 2.8, and an R2 of
5.2% (Table 2, Figure 1). The sixth QTL that was associated with
the FDS 3 trait (qFDS003-03) was identified by the marker inter-
val ss107929602—ss107925487 on chromosome 6 (LG C2). The
QTL interval spanned approximately 6.4 cM, had a peak LOD
score of 4.2, and an R2 of 3.5% (Table 2, Figure 1). The seventh
QTL that was associated with the FDS 3 trait (qFDS003-04) was
identified by the marker interval ss107919498-ss107915722
on the same chromosome 8 (LG A2). The QTL interval spanned
approximately 11 ¢M, had a peak LOD score of 4.6, and an
R2 of 9.6% (Table 2, Figure 1). The four QTL explained ap-
proximately 43.7% of the total variation in FDS 3. The eighth
QTL that was associated with the FDS 4 trait (QFDS004-01) was
identified by the marker interval ss107912672—ss107924081
on chromosome 11 (LG B1). The QTL interval spanned approxi-
mately 12.3 cM, had a peak LOD score of 2.7, and an R2 of
3.4% (Table 2, Figure 1). The ninth QTL that was associated
with the FDS 4 trait (qFDS004-02) was identified by the marker
interval ss4969823-ss107924619 on chromosome 18 (LG G).
The QTL interval spanned approximately 3.7 cM, had a peak
LOD score of 2.9, and an R2 of 8.8% (Table 2, Figure 1). This
same interval which was significantly associated with FDS 4 also
was significant for RRS (QRRSO01-03). The QTL interval spanned
approximately 3.3 ¢cM, had a peak LOD score of 2.9, and an
R2 of 33.3% (Table 2, Figure 1). The two QTL explained ap-
proximately 26.4% of the total variation in FDS 4. The tenth QTL
that was associated with the RRS trait (QRRSO01-01) was iden-
tified by the marker interval ss107912585-ss107920575 on
chromosome 3 (LG N). The QTL interval spanned approximately
4.3 cM, had a peak LOD score of 4.2, and an R2 of 9.9% (Ta-
ble 2, Figure 1). The eleventh QTL that was associated with the
RRS trait (qRRSO001-02) was identified by the marker interval
ss107929213-ss107929551 on chromosome 4 (LG C1). The
QTL interval spanned approximately 5.8 cM, had a peak LOD
score of 5.0, and an R2 of 8.6% (Table 3, Figure 1). Another
QTL associated with the RRS trait (QRRS001-03) was identified
by the marker interval ss4969823—ss107924619 on chromo-
some 18 (LG G). The QTL interval spanned approximately 3.3
cM, had a peak LOD score of 2.9, and an R2 of 33.3% (Table
2, Figure 1). However, this QTL is the same as qFDS004-02 de-
scribed above. The three QTL explained approximately 53.5%
of the total variation in RRS.

Using IM, three additional QTL were identified for SDS foliar
resistance (FDS). The twelfth QTL that was associated with the
FDS 3 trait (QFDS003-05) was identified by the marker interval
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Figure 1. The ‘Pl 4384898’ by ‘Hamilton’ SNP-based genetic linkage map and the positions of the fifteen QTL that underlie SDS resistance found

in this R
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ss107917031=ss107912977 on chromosome 6 (LG C2). The
QTL interval spanned approximately 15.9 ¢M, had a peak LOD
score of 2.9, and an R2 of 2.4% (Table 2, Figure 1). The thir-
teenth QTL that was associated with the FDS 3 trait (QFDS003-
06) was identified by the marker interval ss107915722—
ss107918074 on chromosome 8 (LG A2). The QTL interval
spanned approximately 13 cM, had a peak LOD score of 2.7,
and an R2 of 17.4% (Table 2, Figure 1). The fourteenth QTL
that was associated with the FDS 4 trait (QFDS004-03) was
identified by the marker interval ss107924445—ss107918378
on chromosome 4 (LG C1). The QTL spanned approximately
26.6 cM, had a peak LOD score of 2.6, and an R2 of 4.8%
(Table 2, Figure 1).

QTL that underlie both FDS 3 (qFDS003-03 and qFDS003-
05), and FDS 4 (qFDS004-03 and qFDS004-04) were identi-
fied on chromosome 6 (LG C2) (Table 2, Figure 1). Similarly, QTL
that underlie both FDS 4 (qFDS004-02) and RRS (qRRS001-03)
were identified on chromosome 18 (LG G) (Table 2, Figure 1).

Common Genes within the QTL Regions

Using CIM, approximately 1,459 genes were identified with-
in the genomic regions containing QTL for FDS 2, FDS 3, FDS 4,
and RSS (Table 4—Supplementary data). The most frequently
occurring genes (> 5 copies) within these regions were those en-
coding for plant-type serine-threonine protein kinase (Van Ben-
tem et al., 2008), pentatricopeptide repeat-containing protein,
MYB-related protein, RNA binding protein, ATP binding cassette
transporter, protein phosphatase, ologopeptide transporter,
ascorbate oxidase, cytochrome P450, copper transporter pro-
tein, CDC2-related kinase, amino acid transporter, zinc finger
protein, mitochondrial carrier protein, membrane associated
finger protein, homeobox protein, ATP dependent helicase, ATP
independent helicase, subtilisin-related serine protease, sensor
histidine kinase, RAS-related GTPase, NAD dependent epimer-
ase, glucosyl transferase, F-Box/LRR protein, centurin, aspartyl
protease, aquaporin transporter, thioredoxin-related protein,
synthaxin, solute carrier protein, and many others (Table 4—
Supplementary data).

Discussion

The first ‘P1438489’ by ‘Hamilton’ high density SNP-based
genetic map presented here is among the few high density
maps published in soybean to date (Choi et al., 2007; Hyten
et al., 2010b; Vuong et al., 2010) and among the few in crops
and other plant species (Feltus et al., 2010). The map can be
used to discover new QTL for other agronomic traits and to de-
cipher the candidate genes that underlie these traits.

Several chromosomes are fragmented in to more than one
LG (5a and 5b; 11a, 11b, 11¢, and 11d; 13a and 13b; 15a
and 15b; 16a and 16b; 17q, 17b, 17¢, and 17d; 20a and
20b) which increased the number of LGs into 31 compared to
20 chromosomes may be due to the relatively small popula-
tion size used in this study (50 RILs). We are in the process of
increasing this population size to >100 RILs in order to construct
a robust genetic linkage map based on this population and to
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accurately detect QTL for important agronomic traits.
Previously, Kassem et al. (2007) reported nine QTL for SDS
resistance. In the same publication, a decade (1996—2006) of
SDS resistance QTL mapping in ExF was also summarized. QTL
reported in Kassem et al. (2007) were identified using the ‘Es-
sex’ by ‘Forrest’ RIL population and the updated ExF genetic
map based mainly on SSR markers (Kassem et al., 2006). Later
reports increased the number of QTL recognized to 14 (Prabhu
et al,, 1999; Farias et al., 2007; Kazi et al., 2007, 2008) in
diverse germplasm. In the study reported herein, fourteen QTL
for SDS resistance were identified, twelve QTL for foliar (FDS)
and three QTL for root (RRS) symptoms caused by F. virguliforme
infection. At the same position of the QTL (qFDS002-01) identi-
fied on chromosome 1 (LG D1a), QTL for soybean cyst nema-
tode (SCN) resistance were identified using this same population
(Yue et al. 2001). QTL for several other agronomic traits such as
javanese root-knot nematode resistance, protein concentration,
oil content, and leaf length, were also identified in this region
(SoyBase 2010). At the same region of gFDS002-02 identified
on chromosome 10 (LG O), only one QTL for Southern root-knot
nematode resistance was identified (SoyBase 2011; Li et al.,
2001). Similarly, on the same region containing qFDS002-03
identified on chromosome 19 (LG L), QTL for lodging, seed lin-
oleic acid content, plant height, and sucrose concentration were
identified and mapped (SoyBase, 2011). Interestingly, a QTL for
sclerotinia stem rot resistance was identified and mapped 5 cM
downstream from this region containing qFDS002-03. The two
QTL gFDS003-01 and gFDS003-02 identified on chromosome 2
(LG D1b) were only 8 cM apart and QTL for several morpholog-
ical traits such as plant height, yield, leaf width, and leaf length
were identified within this region (SoyBase, 2011). On chromo-
some 6 (LG C2), the genomic region containing qFDS003-03,
qFDS003-05, qFDS004-03, and gFDS004-04 spanned from
17 cM to 40 cM (approx. 23 cM) and could be designated as
one region that underlie resistance to both FDS 3 and FDS 4.
Approximately 10 cM upstream of this region, a QTL for SCN
resistance was identified (SoyBase, 2011; Wang et al., 2001).
Using the same RIL population (Pl 438489BxH), QTL for SCN
resistance were mapped 10 cM upstream and 60 cM down-
stream from the region containing gFDS003-03, gFDS003-05,
qFDS004-03, and qFDS004-04 (Yue et al., 2001) on chromo-
some 6 (LG C2). Approximately 80 cM downstream of this re-
gion, QTL for SDS resistance were identified and mapped in
different genetic backgrounds (Igbal et al., 2001; Kassem et
al., 2006, 2007). Recently, QTL for SDS resistance (cqRfs4; leaf
DX) were identified approximately 60 cM from the first re-
gion containing qFDS003-03, qFDS003-05, gFDS004-03, and
qFDS004-04 (Kazi et al., 2008) on LG C2 which indicates the
existence of several SDS resistance QTL on this chromosome. On
chromosome 8 (LG A2), a cluster of SDS resistance QTL contain-
ing both gFDS003-04 and gRRSO01-03 was identified from 2
to 28 cM (26 cM span). Interestingly, a QTL for SCN resistance
(Concibido et al., 2004), and SDS resistance (SoyBase, 2011)
were identified 4 cM, and 20 cM from this region, respectively.
On chromosome 11 (LG B1), QTL for hypocotyls length and alu-
minum tolerance were identified on the same region containing
qFDS004-01 and a cluster of QTL for SCN resistance was iden-
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tified approximately 40 cM from this region (Yue et al., 2001;
Concibido et al., 2004). Chromosome 18 (LG G) is of particular
interest since it contains a cluster of SDS and SCN resistance
QTL identified in different genetic backgrounds (Kassem et al.
2006, 2007; Kazi et al., 2008; Concibido et al., 2004). In this
study, the region identified on this chromosome contains both
qFDS004-02 and gqRRSO01-03 which indicates that this region
confers resistance to both foliar (FDS) and root (RRS) symptoms.
This agreed with earlier results (Meksem et al., 1999; Igbal et
al., 2001; Kassem et al., 2006, 2007) was in contrast to what
has been previously reported in ‘Flyer’ by ‘Hartwig’ RIL popula-
tion (Kazi et al., 2008).

Interestingly, a QTL for SDS resistance was mapped only 2
cM from the region containing qRRS001-01 identified on chro-
mosome 3 (LG N) (Njiti et al. 2002). On chromosome 4 (LG C1)
containing gRRS001-02 and gqFDS004-03, no QTL for disease
resistance have been mapped in this region; however, QTL for
several morphological traits such as seed weight, pod maturity,
and seed yield have been mapped at this location (SoyBase,
2011).

The most frequently occurring genes within these QTLs were
plant-type serine-threonine protein kinase, pentatricopeptide
repeat-containing protein and MYB-related protein. The four
QTLs collectively had ten copies of each gene. QTL qFDS003-
01 had four copies of each of the three genes which is the
greatest number of copies. The serine-threonine protein kinase
gene is a stress-induced gene which helps plants to cope with
environmental stresses such as drought, salinity, and cold (Xinguo
et al., 2010). The pentatricopeptide repeat-containing protein
is essential for RNA editing in chloroplasts and mitochondrial
transcripts (Kotera et al., 2005; Bentolila et al., 2010), and the
MYB-related protein is a member of a class of transcription fac-
tors identified to be involved in plant stress responses (Martin
and Paz-Ares, 1997, Ge et al., 2011, Uehara et al., 2010).

Conclusions

In this study, we constructed the first ‘PI438489B’ by ‘Hamil-
ton’ SNP-based map and identified fourteen QTL that underlie
SDS resistance including both resistance to foliar and root rot
symptoms caused by F. virguliforme infection. The map presented
here is among the few high density map published in soybean
(Choi et al., 2007; Hyten et al. 2010b; Vuong et al., 2010) and
other plant species (Feltus et al., 2010). The map can be used to
discover new QTL for other agronomic traits and to decipher the
candidate genes that underlie these traits.

Seven of the intervals encompassing the QTL had been iden-
tified previously (on LGs C1,C2, D1b, G, L, N and O) associated
with resistance to SDS and this provided strong evidence that
the map and trait scoring methods used were valid. Seven QTL
were identified in novel locations (LGs A2 (2), B1,C2,D1q,D1b
and O). Some of these QTL might be confirmed in NILs or by
further mapping in a larger portion of the population. Equally
some QTL may prove to have been type Il errors by additional
experiments.

Several studies reported SNP markers associated with QTL
for several traits in soybean (Vuong et al., 2007). However, only

one of these studies reported an exclusively SNP-based genetic
map (Hyten et al., 2010a). However, SNPs are being integrat-
ed with SSRs, RFLPs, AFLPs, and other markers to construct high
density genetic linkage maps (Hyten et al. 2010a; Hyten et al.
2010b) that are being used by the soybean research community
and biotechnology industry to help improve soybean (Vuong et
al., 2007). Therefore, the SNP-based map and the QTL regions
presented here can be used in breeding programs to develop
soybean cultivars with increased resistance to SDS.

List of Abbreviations

SDS: Sudden death syndrome; SNP: Single nucleotide polymor-
phism; RFLP: Restriction fragment length polymorphism; AFLP:
Amplified fragment length polymorphism; RAPD: Random ampli-
fied polymorphic DNA; DAP: Days after planting; RIL: Recombi-
nant inbred line.
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