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Abstract

Improving drought resilience in soybean requires a deep understanding of  the genetic basis underlying root architecture, shoot 
biomass, and water-use traits. Using the well-characterized Essex × Forrest recombinant inbred line (RIL) population (n = 94), we 
combined classical composite interval mapping (CIM) with interpretable machine learning (ML) models to dissect 15 traits related 
to early vigor and drought tolerance. Genomic prediction models—including Ridge Regression and XGBoost—were trained on 370 
molecular markers. XGBoost achieved superior predictive accuracy (R² up to 0.72), especially for biomass-related traits. SHAP 
(SHapley Additive exPlanations) analysis provided interpretable insights into marker contributions, identifying both previously 
known QTL and novel loci with directional effects. Several high-importance markers aligned with QTL reported by Williams et al. 
(2012) and Salvador et al. (2012), supporting the biological validity of  the ML-based approach. Traits such as relative water content 
(RWC), root fresh weight (RFW), and shoot dry weight (SDW) were effectively modeled, and markers on chromosomes 1, 8, 10, and 
18 emerged as pleiotropic hotspots. This integrative framework showcases the power of  explainable AI in plant genomics and offers 
a robust pipeline for future marker-assisted selection in soybean breeding.
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1. Introduction

Soybean (Glycine max (L.) Merr.) plays a central role in global agriculture, 
serving as a major source of  plant-based protein and oil for food, feed, and 
industrial products. As climate variability increases, improving complex physi-
ological traits—particularly those related to water uptake, biomass accumula-
tion, and early vigor—has become a priority for sustaining soybean productivity 
under abiotic stress conditions such as drought. Traits like basal root thickness 
(BRT), lateral root number (LRN), maximum root length (MRL), plant height 
(PH), seed weight (SW), root fresh weight (RFW), root dry weight (RDW), shoot 
fresh weight (SFW), shoot dry weight (SDW), and (RFW/RDW) are vital for 
nutrient acquisition, water-use efficiency, and overall plant performance.

To better understand the genetic control of  these traits, we focused on the 
well-characterized Essex × Forrest (ExF) recombinant inbred line (RIL) popula-
tion, which includes 94 lines derived from a cross between two agronomically 
distinct cultivars. Essex contributes higher yield and oil content, while Forrest 
offers strong disease resistance and moderately elevated protein levels. Since 
its development, the ExF population has been extensively phenotyped across 
multiple environments (Meksem et al., 2001; Cho et al., 2002; Njiti et al., 2002; 
Yuan et al., 2002; Lightfoot et al., 2005; Kassem et al., 2004a,b, 2006, 2007a,b; 
Alcivar et al., 2007; Jacobson et al., 2007; Karangula et al., 2009; Ivey et al., 
2011; Williams et al., 2012; Salvador et al., 2012), providing a rich dataset for 
trait dissection. Prior work by Williams et al. (2012) identified significant quanti-
tative trait loci (QTL) controlling root and shoot traits using composite interval 
mapping (CIM), with key genomic regions clustered on chromosomes 3, 6, 8, 
13, 14, and 18. Many of  these QTL exhibited pleiotropic effects, influencing 
multiple traits simultaneously (Williams et al., 2012).

In our study, we extended this analysis by incorporating four additional 
physiological traits related to leaf  tissue: leaf  fresh weight (LFW), leaf  dry 
weight (LDW), leaf  turgid weight (LTW), and relative water content (RWC) 
from Salavador et al. (2012). These parameters provide complementary insights 
into drought tolerance mechanisms at the seedling stage, particularly in the con-
text of  water retention and turgor maintenance. Among them, RWC is widely 
recognized as a robust indicator of  leaf  hydration status, integrating aspects of  
water uptake, transpiration, and cellular elasticity.
To quantify RWC, we adopted the standard formula described by Salvador et 
al. (2012):

RWC=(Leaf  Fresh Weigh-Leaf  Dry Weigh)/(Leaf  Turgid Weight-Leaf  Dry 
Weight)

Previous QTL mapping in the ExF population identified genomic regions 
associated with RWC, particularly under water-limited conditions, highlighting 
the genetic basis of  physiological drought tolerance mechanisms (Salvador et 
al., 2012; Grant et al., 2010). 

While traditional QTL mapping approaches like CIM have successfully 
identified major loci for complex traits, they face limitations in detecting small-
effect QTL, modeling nonlinear relationships, and handling genotype-by-envi-
ronment (G×E) interactions. These limitations have led to increasing adoption 
of  genomic prediction (GP) and machine learning (ML) approaches in plant 
genetics. GP models use genome-wide marker information to predict pheno-
typic performance, enabling selection before full phenotyping and thereby ac-
celerating breeding cycles (Meuwissen et al., 2001; Crossa et al., 2017). Among 
machine learning methods, Ridge Regression Best Linear Unbiased Prediction 
(RR-BLUP) is widely used due to its simplicity and robustness. However, nonlin-
ear models such as extreme gradient boosting (XGBoost) offer the added advan-
tage of  modeling epistatic and interaction effects (Chen and Guestrin, 2016).

The integration of  explainable AI tools like SHAP (SHapley Additive ex-
Planations) further enhances ML-based genomic analysis by attributing trait 
variation to specific markers in an interpretable manner (Lundberg and Lee, 
2017). This capability is particularly valuable for breeding programs, as it pro-
vides biological insight and allows for prioritization of  markers with real-world 
predictive utility.

Given the depth of  phenotypic and genotypic data available for the ExF 
RIL population, including both classical and newly evaluated traits, there is an 
opportunity to revisit the genetic basis of  these traits using state-of-the-art ma-
chine learning and interpretation frameworks. By comparing traditional QTL 
regions with marker importance derived from SHAP and ML-based models, we 

can assess both predictive power and biological relevance.
In this study, we aimed to (i) perform machine learning-based genomic 

prediction for 15 root, shoot, and leaf  traits in the ExF RIL population, (ii) 
optimize model performance using hyperparameter tuning, (iii) apply SHAP 
for marker-level interpretation, and (iv) compare important markers identified 
through ML to those previously reported via CIM. This integrative approach 
seeks to enhance our understanding of  the genetic architecture underlying bio-
mass partitioning and water-use efficiency in soybean and provide valuable tools 
for marker-assisted selection.

2. Materials and Methods

2.1. Plant Materials

The study utilized 94 recombinant inbred lines (RILs) developed from a 
cross between the soybean cultivars Essex and Forrest (ExF, n = 94). The popu-
lation was advanced to the F6:8 generation via single-seed descent (Lightfoot et 
al., 2005). Field evaluations were carried out in 2010 at two contrasting environ-
ments, Carbondale, Illinois, and Spring Lake, North Carolina, using a random-
ized complete block design with two replications at each site (Williams et al., 
2012; Salvador et al., 2012).
 
2.2. Phenotyping Evaluation

Eleven (11) traits related to root and shoot architecture: basal root thickness 
(BRT), lateral root number (LRN), maximum root length (MRL), root fresh 
weight (RFW), root dry weight (RDW), shoot fresh weight (SFW), shoot dry 
weight (SDW), plant height (PH), and the ratios of  RFW/SFW and RDW/
SDW were evaluated as described earlier (Williams et al., 2012). Briefly, plants 
were harvested at maturity growth stage, root systems were gently washed, and 
fresh weights were recorded immediately. Dry weights were obtained after oven-
drying samples at 60°C for 72 hours. BRT and MRL were measured manually 
using digital calipers and rulers. LRN was determined by visual counting.

We also evaluated an additional four (4) traits: leaf  fresh weight (LFW), leaf  
dry weight (LDW), leaf  turgid weight (LTW), and relative water content (RWC). 
RWC was calculated by the formula: RWC = (Leaf  Fresh Weight – Leaf  Dry 
Weight)/(Leaf  Turgid Weight – Leaf  Dry Weight) as described earlier (Salvador 
et al., 2012).

2.3. Genotyping and Data Processing

DNA was extracted from young trifoliate leaves using a modified cetyltri-
methylammonium bromide (CTAB) method, following the protocol previously 
described by Kassem et al. (2006). Genotyping of  the Essex × Forrest (ExF) 
recombinant inbred line (RIL) population (n = 94) was performed using a panel 
of  370 molecular markers, including 195 simple sequence repeat (SSR) markers 
and 175 additional markers comprising restriction fragment length polymor-
phism (RFLP), amplified fragment length polymorphism (AFLP), and morpho-
logical loci. This marker set was selected to ensure comprehensive coverage 
across all 20 soybean chromosomes (Kassem et al., 2006).

Genotype calls were quality-checked, and markers with ambiguous scoring 
were re-evaluated. Individuals or markers with more than 10% missing data 
were excluded from the analysis. Remaining missing genotypes were imputed 
using the most frequent allele observed at each marker within the population. 
The final genotype matrix was organized with individuals as rows and markers 
as columns, and marker data were coded categorically based on allele origin—
Essex, Forrest, or heterozygous where applicable (Kassem et al., 2006).

2.4. Exploratory Data Analysis (EDA)

Exploratory data analysis was conducted using Python 3.11 (Pandas, Seaborn, 
Matplotlib libraries). Summary statistics (Mean, Standard Deviation, Mini-
mum, and Maximum) were computed for each trait. Histograms were plotted 
to assess trait distributions, and Pearson correlation coefficients among traits 
were calculated. No significant outliers were detected.
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2.5. QTL Mapping: Composite Interval Mapping

Quantitative trait loci (QTL) mapping was conducted using composite in-
terval mapping (CIM) as previously described earlier (Williams et al., 2012; 
Salvador et al., 2012). Analyses were performed in QTL Cartographer version 
2.5 (Wang et al., 2012), employing standard model 6 (forward regression) with 
a walking speed of  1 cM and a window size of  10 cM. Significance thresholds 
for QTL detection were determined using 1,000 permutations at a significance 
level of  P = 0.05.

For each trait, the genomic positions of  significant QTL were reported in 
centimorgans (cM), and corresponding statistics—including LOD score, addi-
tive effect, and the proportion of  phenotypic variance explained (R²)—were re-
corded. This mapping strategy follows the protocols established in earlier studies 
on the same population to ensure methodological consistency and comparability 
of  results (Williams et al., 2012; Salvador et al., 2012).

2.6. Machine Learning-Based Genomic Prediction

Two ML models were implemented for genomic prediction: 

2.6.1. Ridge Regression Best Linear Unbiased Prediction (RR-BLUP)

Ridge regression was applied using RidgeCV (scikit-learn), with alpha (reg-
ularization strength) optimized across a log-spaced range from 10−610−6 to 
106106. Five-fold cross-validation (CV) was used for model selection.

2.6.2. Extreme Gradient Boosting (XGBoost)

XGBoost regression models were implemented using the xgboost Python 
package. Hyperparameters were optimized via grid search (GridSearchCV) over 
the following ranges:
n_estimators: [300, 500], max_depth: [4, 6, 8], learning_rate: [0.01, 0.05, 0.1], 
subsample: [0.8, 1.0], and colsample_bytree: [0.8, 1.0]. The optimal model was 
selected based on mean 5-fold CV R² score.

2.7. Model Evaluation

Model performance was evaluated on a 20% held-out test set. Performance 
metrics included coefficient of  determination (R²) and Root Mean Square Error 
(RMSE) (Willmott and Matsuura, 2005). Additionally, five-fold CV R² scores 
were reported to assess model robustness across the full dataset.

2.8. Feature Importance and Explainable AI

Feature importance from the best XGBoost model was extracted and ranked 
based on gain scores. SHAP (SHapley Additive exPlanations) analysis was con-
ducted using the TreeExplainer from the shap package to assess the contribu-
tion of  individual markers to trait predictions. Global SHAP summary plots and 
marker-specific dependence plots were generated.

2.9. Software and Computational Resources

All analyses were performed using Python 3.11 (Van Rossum and Drake, 
2009). Packages used included: Pandas (McKinney, 2010), Numpy (Harris et 
al., 2020), Scikit-learn (Pedregosa et al., 2011), XGBoost (Chen and Guestrin, 
2016), SHAP (Lundberg and Lee, 2017), Matplotlib (Hunter, 2007), Seaborn 
(Waskom, 2021),  Statsmodels (Seabold and Perktold, 2010). Jupyter Notebbok 
(Kluyver et al., 2016) was used as the interactive environment. Computations 
were performed on a MacBook Pro equipped with an Apple M1 Pro processor 
and 16 GB of  RAM, running macOS Sonoma version 14.4.1.

3. Results

3.1 Overview of  Previously Identified QTL

Extensive prior work on the Essex × Forrest (ExF) recombinant inbred line 
(RIL) population has characterized the genetic architecture of  root, shoot, and 
water-related traits using traditional QTL mapping approaches (Kassem, 2021). 

Williams et al. (2012) identified significant QTL controlling basal root thickness 
(BRT), lateral root number (LRN), maximum root length (MRL), root fresh 
weight (RFW), root dry weight (RDW), shoot fresh weight (SFW), and shoot 
dry weight (SDW) through composite interval mapping (CIM) implemented in 
QTL Cartographer. Major QTL clusters were localized on chromosomes 3, 
6, 8, 13, 14, and 18, with some loci exhibiting pleiotropic effects across mul-
tiple traits (Williams et al., 2012). Additional work by Salvador et al. (2012) 
expanded this analysis to include leaf-related traits, identifying significant QTL 
for leaf  fresh weight (LFW), leaf  dry weight (LDW), and relative water content 
(RWC), particularly on chromosomes 2, 3, 4, 6, 8, 10, 11, 17, and 18. Col-
lectively, these studies highlighted key genomic regions contributing to plant 
biomass partitioning, root system development, and water retention efficiency 
in soybean. Building upon these foundational results, the present study aims to 
re-assess the genetic basis of  these traits using ML-based genomic prediction 
models and SHAP-based marker interpretation, providing a complementary 
and potentially higher-resolution understanding of  trait architecture in the ExF 
RIL population.

3.2 Phenotypic Variation Among RILs

Phenotypic evaluation of  the ExF RIL population revealed substantial 
variation across all 15 measured traits (Figure 1). Root biomass (RFW, RDW), 
shoot biomass (SFW, SDW), and water-related indices (RWC, LFW, LTW) dem-
onstrated continuous, polygenic-like distributions (Figure 2). Summary statistics 
(Table 1) indicated wide ranges and moderate to high coefficients of  variation 
(CV), particularly for shoot traits. Traits such as BRT and RDW exhibited nar-
rower distributions, suggesting more constrained genetic control or measure-
ment resolution.

To further quantify trait distribution characteristics, we calculated skewness 
and kurtosis values (Table 2). Most traits showed moderate right skew, apart 
from extreme values for biomass ratios. RFW/RDW exhibited the highest 
skewness (7.66) and kurtosis (67.01), indicating a highly asymmetric and lep-
tokurtic distribution. SFW/SDW and RWC also displayed substantial devia-
tions from normality (kurtosis > 12). In contrast, leaf  traits such as LFW and 
LTW were more normally distributed, with near-zero skewness and mesokurtic 
kurtosis values. These deviations from normality support the use of  nonlinear 
models, such as XGBoost, which can capture non-additive genetic effects and 
handle skewed phenotypic traits more effectively than linear models.

3.3 Trait Relationships and Correlations

Correlation analyses revealed biologically intuitive relationships within trait 
categories. Root traits were moderately to strongly correlated with one another, 
particularly RFW and RDW (r = 0.89), as shown in the root-specific pairplot 
(Supplementary Figure S1A). Shoot traits (SFW, SDW, SFW/SDW) formed a 
tight cluster (Supplementary Figure S1B), and leaf  traits (LFW, LTW, LDW, 
RWC) displayed strong interdependence (Supplementary Figure S1C). The full 
correlation heatmap (Figure 4) confirmed these intra-group associations and 
revealed a few moderate cross-category relationships, such as between SFW and 
LFW or RFW and RWC.
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Table 1. Summary statistics of  phenotypic traits in the ExF RIL population. Includes mean, standard 
deviation, min, max, and coefficient of  variation (CV) for each of  the 15 measured traits.
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Figure 1. Boxplots of  eleven root, shoot, and leaf  traits measured in the Essex × Forrest (ExF) recombinant inbred line (RIL) population. Traits include maximum root 
length (MRL), lateral root number (LRN), basal root thickness (BRT), plant height (PH), root fresh weight (RFW), root dry weight (RDW), shoot fresh weight (SFW), 
shoot dry weight (SDW), shoot weight (SW), the ratios of  root fresh weight to shoot fresh weight (RFW/SFW) and root dry weight to shoot dry weight (RDW/SDW), 
leaf  fresh weight (LFW), leaf  dry weight (LDW), and relative water content (RWC). Outliers are indicated as individual points beyond the whiskers.
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Figure 2. Distribution histograms and density plots of  eleven root, shoot, and leaf  traits in the Essex × Forrest (ExF) RIL population. Histograms and kernel density 
estimates (KDE) illustrate the distribution shape and normality for each trait. Traits exhibit varying degrees of  symmetry and skewness.
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3.4 Genomic Prediction Performance

Genomic prediction models were trained using Ridge Regression and XG-
Boost. Ridge models achieved moderate accuracy across traits (mean R² ≈ 
0.45), while XGBoost consistently outperformed Ridge, with R² values exceed-
ing 0.70 for traits like SFW and RFW. Figure 5 illustrates observed vs. predicted 
values, with XGBoost showing tighter clustering along the 1:1 diagonal, indicat-
ing superior fit and capacity to capture nonlinear and interaction effects. 

3.5 Trait-Specific Marker Importance

Using feature importance scores from XGBoost, we identified the top 15 
contributing markers per trait (Figure 6). A full list of  the top 50 most im-
portant markers for each trait is provided in Supplementary Tables S1–S15. 
These tables offer a detailed view of  the ranked marker contributions, allowing 
downstream users to prioritize candidate loci for validation or marker-assisted 
selection. Markers such as Satt153, Sat_262, Satt107, and Sat_299 emerged 
as highly informative across multiple traits, consistent with previously reported 
pleiotropic QTL on chromosomes 8 and 18 LGs G (Williams et al., 2012; Sal-
vador et al., 2012). The presence of  shared markers between shoot and root 
biomass traits supports the existence of  genomic hotspots influencing general 
biomass allocation.

3.6 Interpretable SHAP Marker Contributions

To complement feature importance scores, we applied SHAP to quantify 
each marker’s directional effect on trait prediction (Figure 7). SHAP beeswarm 
plots revealed both positive and negative effects of  markers on trait values. For 
example, markers such as Sat_320 and DABF-6a-450 contributed positively 
to root biomass, while others like Sat_239 negatively influenced shoot ratios. 
SHAP interpretation enables identification of  markers that not only contribute 
strongly to prediction but also affect trait expression directionally crucial for 
downstream functional validation.

3.7 Comparison to Previous QTL Mapping Results

To assess the robustness and biological relevance of  the markers identi-
fied in this study, we compared our machine learning-derived results—based 
on SHAP and XGBoost feature importance—with previously published QTL 
identified through composite interval mapping (CIM) in the same ExF popula-
tion (Williams et al., 2012; Salvador et al., 2012). Notably, several top-ranked 
markers from our analysis co-localized with QTL reported by Williams et al. 
(2012) and Salvador et al. (2012), highlighting strong concordance between tra-
ditional and ML-based approaches. For example, markers on chromosome 1 
such as Satt267 and Sat368, which were highly predictive of  leaf  turgid weight 
(LTW) and SFW/SDW in this study, had also been associated with biomass 
traits (SFW) in earlier CIM study (Williams et al., 2012). Similarly, Satt399 on 
chr. 4 showed strong associations with BRT, MRL, LDW, SFW, and SDW, echo-
ing results reported by Salvador et al. (2012). These overlaps reinforce the va-
lidity of  the ML approach in detecting biologically meaningful loci, including 
some that may have moderate effects or pleiotropic influence across traits. Ad-
ditional informative markers, listed in Supplementary Tables S1–S15, represent 
novel associations not previously detected using CIM, further expanding the 
landscape of  trait-associated genomic regions.

To investigate this overlap more systematically, we compiled a summary 
of  common QTL across studies (Table 3), focusing on shared markers and 
trait associations. Several markers identified by Williams et al. (2012) for shoot 
fresh weight (SFW)—including Satt177 and Satt424 on chromosome 8—also 
emerged in our study as important for RFW and SN, suggesting potential 
pleiotropic effects or tight linkage. Markers such as Satt239 on chromosome 6, 
initially associated with SFW (Williams et al., 2012), is among the most influ-

Figure 3. Trait correlation matrix. Color-scaled heatmap of  Pearson correlation coefficients among all 15 
traits. Positive and negative associations are indicated in red and blue, respectively.

Figure 4. Genomic prediction: Observed vs. predicted trait values for Ridge Regression and XGBoost. 
XGBoost models outperformed Ridge in nearly all traits, as shown by tighter clustering around the 1:1 
dashed line.

Table 2. Skewness and Kurtosis of  Phenotypic 
Traits in the Essex × Forrest RIL Population.

Table 3. Summary of  common QTL identified across Williams et al. (2012), Salvador et al. (2012), and Knizia et al. (2025, this study). The 
table lists markers previously associated with root, shoot, and leaf  traits, along with their corresponding chromosomes and overlapping trait 
associations identified in the current study using machine learning (ML) and SHAP-based interpretation.
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Figure 5. Top 15 most important markers for each trait based on XGBoost feature importance scores. Each subplot displays marker ranking and gain values. Markers 
like Satt153 and Sat_299 show high importance across multiple traits, indicating potential pleiotropic effects.

Figure 6. SHAP beeswarm plots showing the contribution of  markers to model predictions. Each subplot visualizes SHAP values for top features, where color indi-
cates the marker value (high = red, low = blue) and position along the x-axis indicates SHAP impact. Helps disentangle positive vs. negative marker effects.
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ential feature for SFW/SDW in the current analysis. These findings highlight 
genomic regions of  consistent importance across phenotyping methods and 
analytical frameworks.

Further agreement was observed with the findings of  Salvador et al. (2012), 
particularly for leaf-related and water-use efficiency traits. On chromosome 10, 
Satt358 and Satt132 were strongly associated with LFW (Salvador et al., 2012) 
and were additionally linked to root-related and shoot-related traits (LFW, SFW, 
SDW, RWC, RFW, LRN) and biomass ratio (RFW/RDW) in this study. On 
chromosome 18, markers including Satt324, Satt356, and Satt122 were consis-
tently implicated in multiple traits such as MRL, LTW, and biomass partition-
ing indices (RFW/RDW, SFW/SDW). This region appears to be a genomic 
hotspot for both structural and physiological traits related to drought response. 
The convergence of  these findings across independent studies and analytical 
approaches underscores the stability of  these QTL and their value for marker-
assisted selection aimed at improving early vigor and drought resilience in soy-
bean. 

4. Discussion

This study applied ML-based genomic prediction and interpretable model 
analysis to dissect the genetic architecture of  biomass and water-use traits in 
the well-characterized Essex × Forrest (ExF) soybean RIL population (Kassem, 
2021). Building upon previous work using composite interval mapping (CIM) 
(Williams et al., 2012; Salvador et al., 2012), we integrated XGBoost modeling, 
SHAP analysis, and trait correlations to provide a multilayered view of  trait 
architecture.

Our findings reaffirm the quantitative nature of  traits such as root fresh 
weight (RFW), shoot dry weight (SDW), and relative water content (RWC), as 
evidenced by their continuous phenotypic distributions and modest to high lev-
els of  heritable variation. Consistent with earlier reports, traits within the same 
biological category–such as shoot and leaf  biomass–were tightly correlated (r > 
0.80), indicating potential pleiotropy or closely linked QTL.

Genomic prediction results demonstrated that nonlinear models like XG-
Boost significantly outperformed linear approaches such as Ridge regression. 
This is consistent with prior reports in soybean and other crops that highlight 
the advantages of  ensemble-based tree models for complex trait prediction 
(Crossa et al., 2017; Montesinos-López et al., 2018; Kassem, 2025a,b). Traits 
with more pronounced heritability and less skew–such as SFW and LFW–were 
predicted with higher accuracy, while traits with skewed distributions or com-
plex physiological determinants (e.g., BRT, RWC) were predicted with more 
variability. 

XGBoost-derived feature importance metrics revealed markers of  high pre-
dictive utility across multiple traits, with several overlapping previously mapped 
QTL regions. For instance, markers including Satt324, Satt356, and Satt122 
were consistently implicated in multiple traits such as MRL, LTW, and biomass 
partitioning indices (RFW/RDW, SFW/SDW) (Williams et al., 2012). The high 
importance of  these markers in ML models reinforces their central role in bio-
mass accumulation and partitioning.

Importantly, SHAP analysis extended beyond feature importance to offer 
insight into directional marker effects. This interpretability is crucial for breed-
ers aiming to select for markers that not only predict performance but also 
modulate traits in a favorable direction. SHAP plots showed that many markers 
contribute positively to trait values, such as those associated with higher RFW 
or SDW, while others had consistently negative impacts–information that is of-
ten lost in traditional QTL mapping outputs.

Our integrative approach also revealed strong agreement between mark-
ers identified through ML pipelines and those previously linked to QTL using 
CIM. For example, RWC and LDW shared high-importance markers in LGs E 
(chr. 15) and K (chr. 9), as previously identified by Salvador et al. (2012). This 
reinforces the biological validity of  the ML-based methods and underscores 
their value in QTL re-discovery and refinement.

Together, these results highlight the potential of  combining modern ML 
methods with explainable AI tools like SHAP to not only enhance prediction 
accuracy but also provide trait-level and marker-level biological insight. This 
framework is applicable beyond the current population and traits, offering a 
template for genomic dissection in other complex plant systems.

5. Conclusion

Through the integration of  ML-based genomic prediction and SHAP inter-
pretation, we refined the genetic architecture of  complex biomass and water-use 
traits in soybean. XGBoost significantly outperformed linear models, capturing 
nonlinear interactions and epistatic effects. SHAP values enabled trait-specific, 
directional ranking of  marker contributions, enhancing biological interpret-
ability and marker prioritization. Concordance with previous CIM-based QTL 
mapping affirms the robustness of  our approach, while newly identified loci ex-
pand the landscape of  candidate regions. This pipeline presents a scalable strat-
egy for genomic dissection across diverse plant populations and trait categories.
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